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I. INTRODUCTION 

In the past, the introduction of industrial robots has commonly 

addressed only one task in the manufacturing environments. One gripper 

has been usually attached to the industrial robot to do one task in the 

manufacturing process. Unique tooling is usually fabricated to adapt 

the robot to the specific gripping task at hand. Often, a change in 

production design or model will require removal and/or replacement of 

the end effector in order to be compatible with the current operating 

configuration. Thus, a universal robot equipped with a special end 

effector becomes specialized and can work only with parts and objects 

of certain types and sizes. This limits the handling of the different 

part geometries that can be grasped. 

Historically, the inability of commercial grippers to handle 

several part geometries has prompted users either to modify 

commercially available grippers physically to fit the task at hand, or 

to fabricate a gripper for a specific application. Both commercial and 

user-fabricated grippers still lack versatility. Another approach to 

improve the gripper's versatility is to use Quick-Tool-Changing ex­

change) gripper. These devices are now commercial available and 

usually have four or more different grippers which are stored in a 

gripper magazine. Most efforts, in which the X-change grippers have 

been developed, have emphasized on the tool changing mechanism [36,76]. 

Little work has been done in the design of gripper to handle a wide 

variety of part geometries. Figure 1 shows the commercial available X-­

change gripper. 
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ROBOT FLANGE 

ROBOT ADAPTOR PLATE 

ACTUATOR COUPLING 
PNEUMATIC LINES 

ROBOT ADAPTOR — 

TOOLING ADAPTOR 

LED POSITIONI.N'G INDICATOR 

TOOL ADAPTOR PLATE 

GRiPPER/TOOLING 

TOOL PACK 

FIGURE 1. Quick-Tool-Changing gripper [24] 

V. 



www.manaraa.com

3 

Mutter [41] has stated that even the most exotic robot with a 

substandard hand or end-effector can not be truly effective. The 

author suggests using families of parts in designing grippers. Group 

technology has been used as a technique for identifying and bringing 

together related or similar components in production process in order 

to take advantage of their geometric and process similarities. 

In this study, four different coding and classification methods 

have been used to analyze and define sets of grippers. These methods 

include two different coding methods and two different classification 

methods. The coding methods include production flow analysis (PFA) and 

the Opitz system. The classification methods include rank order 

cluster analysis (ROCA) and cluster analysis with similarity 

coefficients (CASC). The following four methods have been used in this 

study to group parts into families. 

. PFA/ROCA 

. PFA/CASC 

. OPITZ/ROCA 

. OPITZ/CASC 

The purpose of using each coding and classification system is to reduce 

the number of grippers required in each gripper set by taking advantage 

of geometrical similarities within a part family. 

Chelpanov and Kolpashnikov have classified the grasping mechanism 

into the following elements [9]: 

. Clamping or working element 

. Elements for linking the clamping elements with the 
executive mechanism. 
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. Executive mechanism 

. Transmission mechanism between the drive and the 
executive mechanism 

The authors have also presented a detailed classification of clamping 

elements shown in Figure 2. In this study, the geometrical features 

and surface properties of the clamping element have been determined to 

handle a variety of part geometries. 

Variabi­
lity of 
shape 

Special 
solutions 

Made of 
securing 

Surface 
properties 

Geometrical 
features 

Working elements (WE) 

Constructive 
features . 

Kinematics of 
movement 

-c 

General 
features 
of shape 

Degree of 
concordance 
with object 

•c 

FIGURE 2. Classification of clamping elements [9] 
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This research has addressed three specific objectives which 

include the following: 

. Determine what characteristics or features should be present 
in a gripper set contained in the X-change gripper magazine. 
The objective has been to define gripper characteristics to 
maximize the number of different part that can be grasped. 

. Determine which coding and classification method is the best 
in terms of the maximum number of parts which can be 
successfully grasped. 

. Determine what reasonable percentages of parts within a part 
family that a gripper set can grasp successfully. 
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II. LITERATURE REVIEW 

A. Introduction 

Industrial robots, commercially available for the past two 

decades, have been used in a variety of production applications. 

Industrial robots used for assembly are rapidly finding positions on 

manufacturers' shop floors throughout the world. As industrial robots 

are used more for assembly operations, grippers must be able to handle 

a greater variety of part shapes. 

In the past, the introduction of robotics has commonly addressed a 

singular task in the assembly process. Most of robots in the U.S. are 

in the automotive industry, where they paint, spot weld, load machines, 

and perform other handling tasks. In most robotic applications, unique 

tooling is usually fabricated to adapt the robot to the specific 

gripping task at hand. 

Grippers are often designed to suit the geometry and complexity of 

a particular component. Whenever possible, the gripper should include 

some flexibility so it can be used for handling and manipulating all 

the components being processed by the robot. Unfortunately, such a 

universal gripper does not presently exist, though it is possible that 

it will be available in the foreseeable future. 

The designs that come closest to satisfying the ideal of 

universality are those for artificial hands designed specifically for 

robots. These usually have three fingers - thought to give virtually 
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the same capability as the human's five fingers. At present these 

devices are more suited to experimental work than to the real world of 

industry and automated assembly processes. 

Historically, the inability of commercial grippers to handle 

several part geometries has prompted users either to modify 

commercially available grippers physically to fit the task at hand, or 

to fabricate a gripper for a specific application. Thus, the design of 

versatile grippers in the automatic assembly is of paramount importance 

for a successful implementation of a industrial robot for an assembly 

process. 

Much research has been done in recent years to develop versatile 

grippers. The following design aspects have been emphasized: 

Developing multi-degrees-of-freedom grippers based 
on the structure of a human hand. 

. Developing a form-adaptable gripper. 

. Developing a jaw profile to fit various part 
geometries. 

. Developing quick-tool-changing grippers. 

Until recently, little was known about the geometries of parts 

that could be successfully grasped with a general purpose gripper. 

Trivedi [69] investigated different techniques of classifying parts in 

a manufacturing setting. Many algorithms have been developed to group 

manufacturing components into part families. 

Schafer and Malstrom [59,60,61] investigated the effectiveness of 

the two-finger, parallel-jaw gripper on a variety of geometric shapes 
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using a miniature robot as manipulator. The authors found that a 

significant number of different part geometries could be grasped 

successfully with a single end effector. 

In this chapter, the research efforts on developing the versatile 

grippers are reviewed first. Next, a form-adaptable gripper research 

efforts are summarized. Research on the design of gripper jaw profiles 

follows. Finally, Quick-Tool-Changing grippers are described. 

B. Gripper Design 

Grippers are either generally designed around a number of 

parameters (e.g., jaw opening and capacity) or specifically designed to 

handle one component and/or one task. In most applications of robotics 

in assembly processes today, a single gripper is used to perform a 

limited number of different tasks. This is because no universal 

grippers are available at present. 

Much research has been done on developing universal grippers. In 

this section, these efforts are reviewed. The difficulties of 

implementing universal grippers in an assembly operation are discussed. 

As will be seen, only few of the investigations have utilized the 

component's geometry in the design of a universal gripper. 

1. Special purpose grippers 

Grippers form one of the most important parts of a robot. Without 

the gripper the robot would be incapable of carrying out its task. An 

ideal gripper is one that will completely emulate the human hand. The 
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human hand has been a continuous subject of investigation to help 

design new versatile grippers. To date, it has not been possible to 

completely emulate the human hand. The design and selection of the 

gripper is very strongly application dependent. The shape, size and 

material of the component to be handled and the environment in which 

the grippers have to work vary for each application. Special purpose 

grippers have therefore been developed and built to match the 

requirements of each application. Typical special purpose grippers are 

shown in Figure 3. 

A review of industrial robots performing assembly tasks reveals a 

large variety of gripper designs, most using two fingers. Each design 

is specific to the shape of the piece to be grasped by virtue of the 

form of the fingers. 

2. Multi-degrees-of-freedom grippers 

Advanced mechanical hands have been designed in recent years. 

These devices possess three or more articulated fingers capable of not 

only holding any irregularly shaped objects but also manipulating them. 

The idea of these devices was from the analysis of a human hand. The 

anthropometry of the human hand has been analyzed to form the design 

basis for versatile mechanical grippers. 

Versatile mechanical hands exhibit the following characteristics 

[36]; 

. Number of degrees of freedom; around 22 

. Independent movements in the wrist; 6 

. Types of sensors with interconnected subcontrol 

V. 
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Figure 3. Some special purpose gripper [24] 
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systems; force, temperature, position, etc. 

. Ways of gripping (external, internal, hooking, etc) 

Because of the numerous degrees of freedom of a human hand, a human 

hand has many prehensile (gripping) modes. These have been described 

by Taylor and Schwarz [67]. The authors described six prehensile 

modes. These include the cylindrical, hook, lateral, palmar, spherical 

and tip modes. The authors also defined three mechanical equivalents 

corresponding to six prehensile modes of a human hand. The prehensile 

patterns and their mechanical equivalents are shown in Figure 4. 

Bianchi and Rovetta [3] examined the mechanics of grasping 

irregularly shaped objects by a planai gripper consisting of two 

articulated fingers and a compliantly mounted palm. The prototype of 

the gripper is shown in Figure 5. In particular, the motion of the 

object relative to the fingers and the palm and the role of friction 

during the grasping process were studied by the authors. 

Crossley and Umholtz proposed a three finger manipulator which was 

designed for remote control in space, with possible additional use as a 

prosthesis [14]. Based on the human hand, the device is capable of 

picking up an object and drawing it into a nested grip against a palm. 

It is capable of holding a pistol-like tool, such as an electric drill, 

and pulling the trigger at the same time. 

Skinner [64] developed multiple prehension manipulator systems 

(MPMS). The objective of the research was to produce a highly 

versatile hand with a minimum number of moving parts, a dependable 

drive system, and an optimum number of degrees-of-freedom. 

V. 
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FIGURE 4. Six prehensile patterns and their mechanical equivalents 
[69] 
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FIGURE 5. Schematic illustration of the planai gripper [-3] 
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The author defined the optimum of the number of degrees-of-freedom 

as follows: 

The number of degrees-of-freedom is considered 
optimum when it is estimated that the manipulator 
can grasp all of the basic geometrical shapes from 
any aspect with the minimum number of external 
control inputs. 

The author defined those basic shapes as rectangular and triangular 

prisms, spheres, and cylinders. The author considered the six basic 

prehensile patterns, shown in Figure 4, selected by Taylor and Schwarz 

[67] as an MPMS design objective. The author viewed that if a 

mechanical hand could achieve those patterns (lateral, hook, tip, 

palmar, spherical, and cylindrical) the hand would be nearly as 

adaptable to shapes as the human hand. 

The author stated the following basic assumptions to design a hand 

for MPMS. 

. The hand should be an assembly of motors and 
mechanisms, called fingers, intended for prehension. 

. The fingers should have one or more bending 
sections. 

. Externally, a finger with its bending sections, 
referred to as links, should be resemble an open 
linkage. 

. Each finger link should be a component of a closed 
linkage which can "drive" or rotate the link. 

. Fingers should not translate but should be 
mechanically identical and substantially attached 
to the hand's base. 

. Three fingers were considered necessary and 
sufficient in the construction of the hand and these 
should be able to approach, contact, or pass one 
another during prehensile operation. 



www.manaraa.com

15 

. The hand should contain all its motors, either in 
the base or finger units. 

. The hand was considered to be an isolated unit, not 
subject to adjustment by external mechanisms. 

. The hand would be mounted on a wrist having six 
degr ees-of-fr eedom. 

The author developed two prototype hands, the NASA Skylab MPMS 

Hand and the Industrial Robot MPMS Hand. The author made the following 

conclusions : 

. A hand built with four motors and four control inputs 
can approximate the prehensile modes of the human hand. 

. Rotating fingers with revolute joints are preferable 
to universal-special jointed fingers. 

. Cross four-bar chains are the simplest and most 
reliable finger-driving mechanisms that meet the 
objectives of the project. 

. Spread prehension is a desirable capability of a 
mechanical hand. 

. A finger-turning mechanism that rotates two fingers 
can achieve the prehensile modes three-jaw, wrap, 
spread, and tip. 

. A "double-dwell" mechanism will turn three fingers 
through the prehensile modes of three-jaw, wrap, 
spread, and tip. 

. When fingers are turned by a "double-dwell" mechanism, 
they only need to bend in one direction from their 
straightened position. 

. Testing of the MPMS hand proves it will operate within 
the conventional robot loading criteria with versatile 
prehension capabilities. 

Jacobsen et al. [25,26,27] developed a high-performance hand with 

tactile sensing. The hand is also approximately anthropomorphic. 
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having three fingers and a thumb, all with four degrees of freedom and 

operated by 'tendons'. Although having fewer degrees of freedom would 

still enable the hand to function adequately, kinematic redundancy was 

deliberately introduced to maximize dexterity and minimize reliance on 

friction for stable grasping. 

Okada [44,45,46] developed a gripper with three cable driven 

fingers, each possessing four degrees of freedom. The versatility of 

this device has been demonstrated in such tasks as picking up a nut, 

assembling it to a bolt, and then tightening it. 

Salisbury and Roth [57] extended the work on the mechanics of 

gripping by Chelpanov and Kolpashnikov [9] and Bianchi and Rovetta [3]. 

The authors concentrated on the kinematic aspects of prehension and 

manipulation by articulated hands. The system comprising the hand and 

the gripped object was modeled as a multi-linkage with true joints (the 

hand's articulation) as well as pseudo ones (the contacts between hand 

and object). Six hundred linkage configurations incorporated hands 

with up to three digits. Each had no more than three articulations and 

was capable of touching the object in one of five ways. Connectivity 

analysis was applied to reduce this list of candidates to 39 

potentially acceptable hand designs which could grasp a workpiece 

securely and also impart small motions to it. Unlike the devices 

presented in previous researches [25,46], the selected design was not 

anthropomorphic. It is consisted of three articulated three-degrees-

of-freedom fingers gripping the workpiece via contact points located at 

the fingertips. 
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3. Grippers for odd-shaped components 

This section reviews the research efforts which treat a difficult 

area of gripper technology. The gripping of irregularly shaped objects 

by what might be termed form-adaptable grippers is overviewed in this 

section. 

Perovskii [49] has described a gripper with jaws in the form of 

rubber bags containing small spherical particles. Normally the 

particles are free to move relative to one another. When the jaws are 

pressed against the object to be gripped, the particles flow in a such 

way that the bags mold themselves to the shape of the object. Air is 

then evacuated from the bags, which causes the spherical particles to 

become more densely packed, and the jaws to solidify against the 

gripped object, providing a firm stable grasp. 

Telia et al. [68] presented a vacuum operated gripper made up of a 

matrix of vacuum cups, each flexibly connected at the end of a rod. 

Each rod can slide in a block so as to allow the cup to conform to the 

surface being gripped. The authors pointed out that by monitoring the 

position of the rods, it is possible also to gain information on the 

three-dimensional geometry of the workpiece. 

Sctmiidt [62] developed flexible molding jaws for grippers. The 

devices reported in the paper were a mechanical variation of 

Perovskii's gripper. Schmidt's emphasis centered on the creation of 

modular designs. Schmidt suggested three possible solutions to the 

problem of flexible grippers which have been developed at the Institut 
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fur Produktionstechnik und Automatisierung (IPA), Stuttgart. Schmidt 

concluded that the three solutions can be used for many different 

gripping tasks, tat they are only a part of the possible gripping 

problem solutions. 

Scott [63] invented the 'OMNIGRIPPER', a form of universal 

gripper. The gripper consisted of an array of 8 X 16 closely space 

pins which can ride vertically up and down independently of each other. 

Scott's device, as shown in Figure 6, is a mechanical variation of 

Telia's gripper. 

Scott mounted the Omnigripper on a Unimation Puma model 560 robot. 

Experiments with the Omnigripper were made to decide whether the 

gripper could handle various part geometries. The experiments showed 

that the Omnigripper was capable of consistently picking up a very wide 

range of objects. These included cubic, cylindrical and triangular 

shapes of varying sizes. One major drawback of this gripper is that 

sophisticated control devices as shown in Figure 7, are required for 

its operation. 

Vassura and Nerozzi [71] investigated the problems connected with 

gripping components of a generic shape and nature while handling them 

during the course of industrial processes. The authors presented a 

gripper with 20 fingers. Each finger was a rod capable of pivoting 

about one of four parallel axes. Figure 8 shows the handling of 

various generic shapes with the gripper. Having a large number of 

fingers ensured that the objects to be gripped are touched at several 
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FIGURE 6. The Omnigripper [63] 
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PUMA 560 

Pro-
processor Host 

FIGURE 7. Main hardware elements of system [63] 
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locations. The limits the contact pressure required at each location 

to ensure a good grasp. 

C. Jaw Design 

Arai and Asada [2] compared three types of jaw pairs: two circular 

shaped jaws, two V-shaped jaws, and a combination of a V-shaped jaws 

and flat jaws. Their analysis was for grippers where the jaw opening-

and-closing action is similar to that of a pair of tongs or scissors. 

Schematic views of three types of hands are shown in Figure 9. 

The criteria used in the comparison were the gripping forces which 

could be applied, the displacement imparted to circular workpieces when 

their diameters changed, and the sensitivity of the relative position 

of the workpieces and the jaws to the friction between them. The 

authors found that, on the whole, twin V-shaped jaws tend to have the 

best performance. 

Pham and Yeo [50] described the design of jaws to handle 

cylindrical workpieces of different diameters concentrically. The jaws 

were quasi-parallel grippers which had circular jaw movements but 

maintained the orientation of the jaws. Examples of quasi-parallel 

grippers are shown in Figure 10. 

Bracken [4] examined the practical aspects of designing grippers, 

particularly for assembly robots. A variety factors regarded as 

relevant to the designer were discussed in this research. These 

included the size of the part to be gripped, the geometry of the part 



www.manaraa.com

22 

FIGURE 8. MIP2 gripper handling [71] 
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Twin V-shaped notch fingers Twin semi-circular notch fingers 

V-shaped notch finger and plane finger 

FIGURE 9. Schematic view of three types of hands [2] 
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FIGURE 10. Example of quasi-parallel grippers [50] 
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surface presented to the gripper, the need for intermediate retaining 

devices or other assembly aids, and the possibility of interference 

with parts already assembled. An example was used to illustrate the 

design of a two-fingered gripper to handle a variety of parts. The 

approach proposed was to classify the parts into families and 

incorporate geometric features in the fingers appropriate for each 

family. 

Bracken used a printing mechanism assembly as an example. The 

author classified printing mechanism components into the following five 

families : 

. Cylindrical 

. Rectangular 

. Flexible 

. Triangular 

. Elliptical 

Bracken defined the following five concerns the designer must take into 

account in the design of a gripper: 

. The size of the part 

. The surface contour presented to the gripper 

. Determine if an assembly aid is required to hold 
a part in the assembly until it is secured by other 
parts or fasteners. 

. The interference 

. Choosing the right datum on the part for grasping and for 
insertion accuracy 

Bracken designed seven features at the gripper as shown in Figure 11. 

The two fingered gripper with these seven features successfully 

assembled the printing mechanism. 
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Gripper, left side 

FIGURE 11. The grippers designed by Bracken [4] 
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D. Interchangeable Grippers and Jaws 

Consider a situation when a single gripper or one pair of jaws 

alone cannot handle a variety of parts and the robot is not 

sufficiently strong to carry multiple gripping devices. Under these 

conditions, a mechanism is required to enable the robot to change 

grippers or their jaws. A review of the design of gripper sets and jaw 

changers is the subject of this section. 

Luo [37] described an automatic quick-change mechanism for jaws. 

The jaws were actively held on to the gripper base by airdriven locking 

pins. Provision was made in the jaw-gripper interface for sensors in 

the jaws to be electrically connected to the robot controller. 

Vranish [72] developed automatically changing complete grippers. 

In addition to mechanical and electrical interfaces, there were also 

means for channelling fluid and fiber-optic signals from the robot to 

the gripper or vice-versa. To accommodate both pneumatically and 

hydraulically actuated grippers, air as well as oil could be supplied 

through the fluid channels provided. Since the system was designed for 

heavy-duty operation, special attention was devoted to the design of 

the cam and locking-pin assembly for securing the gripper to the robot 

wrist. 

The gripper changers discussed by Rusterholtz [56] and Wright [75] 

were generally similar to the device developed by Vranish, except that 

they were designed only for light assembly tasks. Hence, the emphasis 
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was on compactness, low weight and accuracy. There were no hydraulic 

lines as high grip strength was not required. Instead features were 

designed for connecting small vacuum pick-ups and electric servo-driven 

grippers. The mechanical coupling of these grippers to the robot wrist 

was achieved by pneumatic clamping in Rusterholtz's research and by 

combination of screwing and clutch engagement in Wright's work. 
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III. METHOD OF ANALYSIS 

A. Introduction 

Over the past decade or so, many batch production firms have been 

attempting to use group technology (GT) concepts in their 

organizations. The basic idea behind group technology is grouping 

together similar parts in families on the basis of such features as 

shape, size, material, tolerance, finish and required production 

operations. A part family formation provides the opportunity to take 

advantage of design and manufacturing process similarities. 

Similar parts often use the same tooling, jigs, and gages in 

production. Without a classification system there is no easy way to 

identify what parts may be using the same equipment, so the equipment 

must be designed and produced for each part. When a classification 

system is implemented, parts using the same tooling, jigs, and gages 

can be quickly identified as they will be grouped together. Duplicates 

can then be eliminated. When new parts are designed, existing tooling, 

jigs, and gages can be identified and used rather than being designed 

and produced again. 

In this research, four different methods of the part family 

formation were used to take advantage of part similarities in designing 

a gripper set. These four methods have been evaluated to find the best 

coding and classification system in terms of the number of parts that 

can be grasped successfully. The four methods are described in the 

following sections. 

V 
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B. Methods of Part Family Formation 

A part family can be described as a collection of related similar 

or identical parts. Generally, the parts in one part family will have 

similar geometrical shapes and/or require similar machining operations. 

Generally, there are four different methods to use for forming 

part families. These include: 

1. Peripatetic and ocular method 

2. Production flow analysis method 

3. Classification and coding 

4. Mathematical programming method (cluster analysis, pattern 

recognition, fuzzy mathematics, etc.) 

The ocular method is a manual operating method. The part families 

formed by this method depend on the knowledge and understanding of the 

parts and the manufacturing system. This method has limitations and 

has not been used in this analysis. 

The production flow analysis (PFA) is one of the most popular 

methods for formation of part families and machine groups. It is 

concerned with the methods of production and does not consider the 

design features or geometries of the given parts. 

The group technology classification and coding system can reflect 

the design and production information of a product in terms of code 

numbers. For instance, most coding systems are designed to reflect the 

component type, dimensions, shape features, auxiliary holes, material, 

processing methods, accuracy, etc. However, doing this in itself does 

not lead directly to the formation of part families. 
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The production flow analysis (PFA) and the Opitz system were 

adopted as a coding systems in this research. Two clustering 

algorithms were used. These include Rank Order Clustering Analysis 

(ROCA) and Cluster Analysis with Similarity Coefficient (CASC). Both 

clustering systems were combined with the two coding systems. The 

result was four different methods for grouping parts into families. 

Each method is described in the following sections. 

C. Production Flow Analysis 

1. Overview 

The first of the coding methods to be used is production flow 

analysis (PFA). This method has been described by Burbidge [5,6]. The 

method has particular appeal in that it is relatively simple to 

implement and can be applied to the reorganization of existing as well 

as the design of new manufacturing systems. The method requires only 

the use of route sheets for identification of part families and 

corresponding groups of machines. The method usually consists of four 

stages. These four stages are briefly described in the following 

sections. 

2. Outline of the PFA method 

The PFA method involves the systematic analysis of route cards for 

all the parts made in manufacturing company. It is based on the 

assumption that there is family-group structure in all manufacturing 

organizations. The PFA method seeks to find the existing natural 
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association between particular families, or lists of parts, and 

particular groups, or lists of machines. 

The method uses a progressive form of analysis, with four main 

stages. Those four main stages can be summarized as follows: 

Stage 1: Machines are classified by a number according 
to type, on the basis of operations that can 
be performed. Machines capable of performing 
similar operations are usually given the same 
type number. Specific characteristics of 
parts are considered when classifying these 
machines. 

Stage 2; This stage involves extensive checking of the 
parts list and route card information to 
ensure the correctness of information on 
operations to be undertaken and the machines 
to be required. 

Stage 3: The third stage is termed "factory flow 
analysis". It involves a macro-examination of 
parts flow through machines. This allows the 
problem to be organized into a number of major 
part-machine groups. 

Stage 4: Finally, examination and sorting of the part-
machine matrix are completed to form distinct 
groups of parts and machines. 

Stage 1 involves classifying the machines by a number according to 

type, on the basis of the operations that can be performed. Machine 

capable of performing similar operations are usually classified with 

the same type number. The specific needs of parts for particular 

machines within the type are considered when allocating these machines 

to the groups which need them. Machines required for minor and 

ancillary operations are excluded from the analysis. 
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Stage 2 entails the extensive checking of the parts list and 

production route sheet information to identify and ensure correctness 

of the essential information for the analysis. The operations to be 

undertaken should to be checked for each part. The machine necessary 

to perform each of these operations should be also checked. 

Stage 3, called factory flow analysis, involves a macro 

examination of the flow of parts through the machines. It allows the 

problem to be decomposed into a number of major-component groups. 

Although the first three stages are essential to the process of 

the PFA method, the stages are merely necessary preliminaries for the 

provision of the data required. The ultimate purpose of the analysis 

is that of determining appropriate machine-part sub-groupings for a GT 

layout. This fourth and final stage is called group analysis. At this 

stage, a clustering algorithm is required to make part families. In 

the following section, the group analysis is described in detail. 

3. Group analysis 

The group analysis represents the identification method. This 

method uses the information contained on the process route sheets. For 

each part, the particular machines in the routing are identified. The 

sequence of operations and the frequency of a particular machine is not 

important. The data are arranged in matrix where, 

1 if part i is processed on machine j 
bij = { (1) 

0 otherwise 

where i=l,2,....N; N is the set of parts 
j=l,2,....M; M is the set of machines 
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Part-machine group analysis problem may, in its simplest form, be 

expressed as that of making, by a process of row and column exchanges 

of the matrix B, a conversion from rough pattern of "1" entries into an 

arrangement whereby the "1" entries are contained in mutually exclusive 

groups arranged along the diagonal of the matrix. Figure 12 is an 

example of an initial part-machine matrix involving five machines 

(labeled 01 to 05) and six components (labeled 1 to 6). Figure 13 

shows the same matrix after modification by selected row and column 

exchanges. It can be seen that although the original cell entries bj_j 

are unaffected by these exchanges, the result of this manipulation of 

the matrix has been to produce a division of the entries into two 

distinct part-machine groups. 

In a simple case like this, it is not difficult to see intuitively 

what row and column exchanges are necessary to achieve the desired 

result. While an intuitive manual method may be adequate for small 

problems, this approach is progressively less manageable as larger 

problems are analyzed. The need for a more analytical method, 

particularly for large problems, is apparent. 

Two methods, suitable for computer applications, will be 

considered to classify the parts in the data base into families. This 

will yield the first two of the four coding and classification schemes 

to be evaluated. Each classification method is described separately in 

the following sections. 
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Parts 

01 
02 

Machines 03 
04 
05 

1 2 3 4 5 6 7 

0  1 0  1 1 1 0  
1 0 1 0 0 0 0 
1 0 1 0 0 0 1 
0 10 10 10 
1 0 0 0 0 0 1 

FIGURE 12. Example of initial part-machine matrix 

Parts 

1 3 7 2 4 6 5 

Machines 

03 
02 
05 
01 
04 

1 
1 
1 
0 
0 

1 
1 
0 
0 
0 

1 

0 
1 

0 
0 

0 
0 
0 
1 
1 

0 
0 
0 
1 
1 

0 
0 
0 
1 
1 

0 
0 
0 
1 
0 

FIGURE 13. Example of final part-machine matrix 
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D. Opitz System Based Coding and Classification Method 

1. Overview 

Most systems for group technology have as their goal the 

establishment of part families whose manufacturing process sequences 

and requirements are similar. Such families may not have geometrical 

features that are similar enough to permit most of the parts within a 

family to be grasped by a single robotic gripper. 

The third and fourth methods of coding and classification will 

rely on the analyses of part geometry as opposed to the production flow 

of the part. Parts in the data base will be coded on the basis of the 

presence or absence of certain geometric feature. For example, the 

coding might consist of separating cylindrical parts requiring 

rotational machining. Additional features of the cylindrical parts 

will include length to diameter ratios, holes, flat surfaces, and 

internal/external shape elements. Other features will address parts 

will flat surfaces, including parts with cubic/rectangular shape 

configurations. The Opitz system [47], shown in Figure 14, will be 

used to define the geometric features of parts that will be analyzed. 

The system was adopted because it is the best known system. 

A binary system of coding will be developed on the basis of 

presence or absence of certain geometric features. Each part in the 

data base will be coded in this manner. The part will then be 

classified into families using both rank order classification analysis 

(ROCA) and cluster analysis using similarity coefficients (CASC). 
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FIGURE 14. The Opitz coding and classification system 
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These combinations will be the third and fourth coding and 

classification systems to be studied. These classification methods 

will be explained later in this chapter. 

2. Coding based on Opitz system 

The Opitz system, as shown in Figure 14, uses nine digits to 

represent both geometrical and technological information of a part. 

The first five digits characterize the geometrical characteristics of a 

part. The remaining four digits show other supplementary information 

such as materials, dimension, initial forms and accuracy. 

The coding and classification of the Opitz system is based on the 

geometrical features of a part. Thus, the component drawing must be 

referenced when a part is to be coded. The main shape, the shape as 

machined, the initial shape, the material, accuracy and the dimensions 

are representative of information that is coded. 

Basically, the final shape of the part (the shape of the part 

after machining and before assembly) is represented by the geometrical 

code. The initial shape (the shape of the part before machining) is 

given separately in the supplementary code. The initial shape often 

shows the essential geometrical elements of the final shape and these 

are then used for the description of the main shape. 

3. The use of the Opitz system 

The initial arrangement of a component into one of the component 

classes depends on the dimensional ratios according to the overall" 
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shape of the part. The geometrical overall shape of a part is the 

least circumscribing cylinder or rectangular prism, oriented according 

to the axis of the main shape of the part. 

The overall shape of rotational components, with and without 

deviations, is given by a cylinder with dimensional ratio of length L 

to diameter D. For rotational parts without deviations and rotational 

parts with deviations with only axis of rotation, it is the L/D ration 

of the cylinder whose geometrical axis coincides with the rotational 

axis of the part and that envelopes the finish-machined part being 

coded. 

For rotational components with deviations and several axes of 

rotation, the L/D ratio is that of the longest rotational axis to the 

largest relevant diameter resulting from the rotation of the part. 

Non-rotational parts are enclosed in the rectangular prism of 

least volume. This is described by the lengths of its edges A, B and 

C. In this description A > B > C. Figure 15 and Figure 16 show an 

examples of the coding using the Opitz system. 

E. Rank Order Cluster Analysis 

1. Overview 

Two rank order cluster analyses (ROCA) have been suggested for use 

by King [29,30]. Both ROCA methods provide a simple, effective, and 

efficient analytical technique for defining groups of parts and 

machines. The methods are specially developed for computer 
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80 

•5 
o 
"J 

Rotaiional component L/D <05 

Stepped to one end, no shape elements. 

Smooth or stepped to one end, with functional groove 

External plane surface. 

Axial holes, related by a drilling pattern, no gear teeth. 

FIGURE 15. Illustration of coding of a rotational part with the Opitz 
system [47] 
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SECTION A-A 

Non-iolational compononi, fiai component 
A/B^3, A/04 

Fiat component, rectangular with small deviations due to casting, 
welding or forming. 

Two principal bores, parallel. 

Plane stepped surfaces, at right angles, inclined ond/or oppar.ite. 

I Holes related by a drilling pattern, drilled in one direction, no 
gear teeth, no forming. 

6 5 4 4 3 

FIGURE 16. Illustration of coding of a flat part with the Opitz system 
[47] 
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application. It is possible to use them with manual computation if 

required, particularly for smaller problems. The methods uses a part-

machine matrix as input data. 

In the first algorithm, every row or column pattern of unity or 

blank entries in the matrix is considered equivalent to a binary number 

with a corresponding unique decimal number equivalent form. The ROCA 

algorithm at its previous stage of development has a number of major 

limitations. First, the storage of a part-machine matrix as a two 

dimensional array places a severe limit on the size of the problem that 

can be addressed. A moderate problem with 50 machines and 2000 

components, together with the program would require core storage in 

excess of 120 K bytes. Secondly, because the sorting procedure has a 

complexity of a cubic order, efficient implementation is not possible 

for very large problems. The first algorithm that reads the entries as 

binary words has some computational limitations. Since the largest 

48 
integer representation in most computers is 2 -1 or less, the maximum 

number of rows or columns that can be dealt with this way would be 47. 

Thus, King [30] developed a new and more efficient version of the 

previously developed ROCA algorithm. In this research, the second 

algorithm developed by King was used because the data for the analysis 

are fairly large. 

2^ Algorithm 

The ROCA algorithm generates a block diagonal structure if it 

exists. More commonly the elements in the matrix are such that they 
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cannot be divided into mutually exclusive diagonal groups. The ROCA 

algorithm still generates a diagonal structure which contains one or 

more elements that do not conform to the block form. These elements 

are considered as exceptional elements comprising part-machine 

combinations that do not form part of the matrix represented by the 

remaining pure diagonal block. 

The algorithm is based on a ranking process for rows and columns 

in a part-machine matrix. The matrix should have a "1" entry to 

indicate a process relationship for any given part and machine and a 

"0" entry for the absence of such a relationship. 

The algorithm uses element by element comparisons for carrying out 

row or column ranking. The iteration continues until no further change 

in rank order is possible. By sorting with several rows or columns at 

the same time, instead of element by element, the efficiency of the 

sorting procedure can be improved. The whole sorting procedure is then 

reduced to that of shifting the order of rows and columns in the manner 

described by the following algorithm: 

Step 1: For each row of the part-machine matrix, locate the 
the rows with entries and move the rows with entries 
to the head of the row list, maintaining the previous 
order of the entries. 

Step 2: Are the current matrix row order and the rank order 
just decided the same? 
If yes, stop. If not, goto step 3. 

Step 3: Rearrange rows of the part-machine matrix according to 
the rank order just decided. 

Step 4: For each column of the part-machine matrix, locate the 
columns with entries and move the columns with entries 
to the head of the column list, maintaining the 
previous order of the entries. 



www.manaraa.com

44 

Step 5: Are the current matrix column order and the rank 
order just decided the same? 
If yes, stop. If not, goto step 6. 

Step 6; Re arrange of columns of the part-machine matrix 
according to the column rank just decided. 
Goto step 1 

Thus, ROCA rearranges rows and columns in a finite number of 

iterations, producing a matrix in which all rows and columns form 

diagonal groupings of the part-machine matrix entries. The algorithm 

would normally begin with the original part-machine matrix. However, 

the choice of initial matrix does not matter because the procedure is 

iterative. Finally, the ROCA is simply a ranking and not an optimizing 

procedure, as groups indicated by ROCA may not be optimal based on 

certain criteria of interest. Figure 17 shows the application of ROCA 

to a simple problem and the iterative steps involved. 

F. Cluster Analysis with Similarity Coefficients 

1. Overview 

An alternative method of classification is more general and has 

been used by biologists to group plants into families on the basis of 

their geometric features [65,66]. This method examines the "degree of 

similarity" between all possible pairs of objects. The next step is to 

create groups of objects such that all pairs included in a group have a 

similarity greater than or equal to some specified level of similarity. 

It then successively lowers the level of admission by steps of 

predetermined equal magnitude. This indicates the need for an 
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MACHINES 

01 02 03 04 05 06 

0 0 1 0 1 0 
0 1 1 0 0 0 
1 0 0 1 0 0 
0 1 1 0 1 0 
1 0 0 1 0 1 

DECIMAL 
EQUIV. 
RANK 
ORDER 

5 

i l  
1 

MACHINES 

01 02 03 04 05 06 

1 0 0 1 0 1 
1 0 0 1 0 0 
0 1 1 0 1 0 
0 1 1 0 0 0 
0 0 1 0 1 0 

24 6 7 24 15 16 

1 5 4 2 6 3 

MACHINES 

01 04 06 03 02 05 

5 1 1 1 0 0 0 
3 1 1 0 0 0 0 
4 0 0 0 1 1 1 
2 0 0 0 1 1 0 
1 0 0 0 1 0 1 

DECIMAL 
EQUIV. 24 24 16 7 6 5 
RANK 
ORDER 1 2 3 4 5 6 

DECIMAL RANK 
EQUIV. ORDER 

10 5 
24 4 
36 2 
26 3 
37 1 

FIGURE 17. Illustration of Rank Order Clustering algorithm 
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appropriate criterion of similarity. A measure called "similarity 

function" or "similarity coefficient" is widely used for this purpose. 

2. The measure of similarity coefficients 

Sneath and Sokal [65] Sokal and Sneath [66] define the similarity 

coefficient as "the quantification of resemblance between two objects". 

In a general sense, it is an "estimation of resemblance". This 

estimation begins with the collection of information about objects that 

are in the group to be studied. This information may already exist and 

merely require extraction from the literature, or it may have to be 

discovered, partly or entirely. 

The actual computation of a similarity coefficient can be done in 

a number of ways, depending on availability of relevant information and 

acceptance of the criterion being used as sufficient and necessary to 

indicate similarity/dissimilarity. For PFA, relevant information in 

the form of part and machine attributes is available from the input 

data. Machines required to perform necessary operations on a part are 

said to be its attributes. Parts processed by a machine are identified 

as attributes for that machine. 

Consider the illustration below. The "1" and "0" states for part 

I and part J represent 'presence' and 'absence' respectively. This is 

called the 2X2 frequency matrix. The entries shown in any two states 

for parts I and J are interpreted as follows: 

a = number of machines visited by both parts I and J. 
b = number of machines visited by part I but not by part J. 
c = number of machines visited by part J but not by part I. 
d = number of machines not visited by either part I or part J. 
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Using above notation, one measure of similarity between parts I 

and J is: 

Similarity coefficient (S) = a/n (2) 

where n = a + b + c 

This result is a fraction representing the degree of association 

between parts I and J (when number of machines visited is used as a 

criterion). 

After calculating similarity coefficients, the next step is to 

store them in a matrix for future reference or use (for more than one 

pair of objects). Such a matrix is called the "similarity" or 

"resemblance" matrix. The matrix is square of the order t x t. It 

consists of t(t - l)/2 entries, where t is the number of objects used 

in the study. The order of objects is the same in the rows as in the 

columns. The entries in the matrix are estimated of similarities 

(resemblances) for every object compared with every other object 

(except the entries in the principal diagonal, which represents an 

object compared with itself). 

3. Clustering algorithm 

For small problems it would be possible to search the similarity 

matrix and find clusters, by hand, directly for the values in the 

matrix. However, for large problems it is obvious that a method 

suitable for a computer application is required. 
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The method adopted in this research was based on the algorithm 

described by Gower and Ross [19]. This method makes use of the concept 

of Minimum Spanning Trees (MST). The author showed that all the 

information required for Single Linkage Cluster Analysis (SLCA) of a 

set of points is contained in the MST. 

The SLCA method first clusters together those parts with the 

highest possible similarity coefficients. It then successively lowers 

the level of admission by steps of predetermined equal magnitude. The 

admission of a part, or group of parts, into another group is by the 

criterion of single linkage. This means that if a specified similarity 

level would admit a part into a cluster then a single linkage at that 

level with any member of that cluster would suffice to warrant 

admission. Similarly, any pair of parts in two different clusters will 

make their clusters join if all of pairs are related at the critical 

similarity level. 

G. Summary 

After the coding and classification procedures described in the 

preceding sections have been completed, four sets of part families will 

exist. Each set will correspond to one of the four coding and 

classification methods. The data base for this investigation has been 

collected from four different industrial organizations. By identifying 

similar machines and production processes, the four sets of production 

data will effectively be merged into one data base. It is on this data 
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set the classifications and coding analyses previously described will 

be performed. 

The first method of coding will be by production flow analysis 

(PFA). The coded parts will then be classified and grouped into 

families by Rank Order Analysis (ROCA) and Cluster Analysis using 

Similarity Coefficients (CASC). These analyses will yield the first 

and second sets of part families. 

A second method of coding will be by the Opitz system. After 

coding, ROCA and CASC will again be used to classify parts into 

families. These analyses will yield the third and fourth sets of part 

families. 

Altogether, 272 parts were involved in the analysis. It is 

necessary that all drawings of the parts to be coded be made available, 

because the codes are formed from the parts' characteristics. Thus, 

the data for the analysis and design of a robotic gripper consists of 

part drawings and manufacturing process sheets from four different 

manufacturing organizations. The descriptions of the data are 

presented in Chapter V. 

Four methods of coding and classification were explained in the 

previous sections. These four methods can be used in manual analyses. 

In this study, computer software was developed to complete coding and 

classification procedures efficiently. The software is explained in 

detail in Chapter VI. Gripper design methods are the subject of the 

chapter that follows. 
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IV. DATA COLLECTION 

A. Introduction 

Production data for the proposed analysis was collected from three 

different manufacturing organizations: Fisher Controls Company of 

Marshalltown, Iowa, Rockwell Collins of Cedar Rapids, Iowa, Caterpillar 

Company of Peoria, Illinois and Colt Industries of Pine Bluff, 

Arkansas. 

The parts were selected as a representative cross section of the 

production output from each of the three facilities. It is likely that 

most parts are not from the same consumer bill of material. In other 

words, no assembly relationship exists between most of the parts 

selected for analysis. Collected data consisted of production 

drawings, process routings, types of machines used at each routing 

operation, material, and any other information required to classify the 

parts into families by each of four different methods. 

B. Part Drawings 

1. Overview 

The coding with the Opitz system is based on the taxonomy of 

parts. In order to code parts with this system, part shape information 

is required. This information is obtained from the part drawing. Each 

company provided the part drawing with a process routing for all parts 

analyzed. In the next section, geometrical and technical information 

contained in a part drawing is overviewed. 
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2. Use of the part drawing 

In order to use the Opitz system in this research, geometrical and 

supplementary information of a part is needed. Geometrical information 

includes an overall shape, external shape and shape elements, internal 

shape and shape elements, plane surface machining, holes, and gear 

teeth. Such information can be extracted from the drawing itself. 

Supplementary information on the drawing includes dimensions, material 

type, and tolerance specifications. Such information usually appears 

on the drawing's title block and the process routing. 

To derive the geometrical characteristics from a part drawing, 

design standards should be understood. Part drawings use standard 

symbols and abbreviations to help users read and understand them. The 

necessary geometrical information can be obtained from those standard 

abbreviations and symbols. 

The views of drawings are also important in determining 

geometrical characteristics. The designer selects only the views 

necessary to adequately and correctly illustrate the assembly or 

detail. Usually, one or two views are sufficient, but three views are 

drawn whenever they make the drawing easier to read and understand. 

Most drawings collected for this research are classified as third-angle 

projection. When convenient, the details of parts are shown in the 

same position. This helps users to read the geometrical 

characteristics by which parts are coded. 
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The overall part shape was determined from a front view of the 

third angle projection. Other information necessary in the Opitz 

system was obtained by either inspection of the drawing and the symbols 

and abbreviations used. 

Holes and gear teeth features are usually shown in a note pointing 

to the feature showing its shape. Hole dimensions include the 

following information: 

1. Diameter of hole as a fraction, decimal-inch, or metric 
dimension with tolerance. 

2. Operation(s) necessary to make the holes, such as drilling, 
boring, countersinking, counterboring, etc. 

3. Depth of hole if it does not run through the material. 

4. Number of holes with similar features. 

5. The detail from which the hole is located if the hole 
is not located in the detail drawn. 

6. For tapped holes, the number of threads and thread from 
designed immediately after the diameter of the hole. 

The above information was used to code parts using fifth digit of the 

Opitz system. 

Where the diameters of a number of concentric cylindrical features 

are specified, such diameters are dimensioned in a longitudinal view. 

The largest diameter was selected for use in coding the first digit of 

the Opitz system. 

Manufacturing companies supplied drawings and process routings for 

this research used various arrangements and layouts for their title 

blocks. All title blocks typically included the following information: 

1. Size and form tolerance in fractional, decimal, angular 
and metric values. 
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2. Drawing, approval, and issuing dates. 

3. Material note. 

4. Part number and description. 

5. Order or machine number. 

6. Company and department title. 

7. Drawing number. 

8. Revision block. 

The information contained in the title block was used to code 

supplementary digits of the Opitz system. 

C. Process Route Sheets 

1. Overview 

The process routing supplies an input data for the PFA method. 

The process routing specifies the sequence of operations with which a 

part is produced. Each manufacturing company provided process routing 

sheets for all parts. In this section, how the process routing is used 

as an input data for the PFA method is explained. 

2. Use of process routings 

The process routings specify the sequence operations by which 

parts are manufactured. The process routing involves the division of 

processes into operations and the specification of machines on which 

the operations are completed. In the PFA analysis, the route sheet is 

only required to determine families of parts and groups of machines. A 

simple example of a route routing is illustrated in Figure 19. 



www.manaraa.com

JGY- DESCRIPTION 1 QTT. P«M NO 1 

Wm/̂ -00 i
 

1
 PRINT NO. REV. NO. COMMENTS 

RELEASE DATE PLANT CHO. 1 BY 1 DATE I REASON 

PINE BLUFF iccis S 
ARCADIA s» 19 1 

ROUTINE 
Ci»th. 
NO. 

14 16 

WOHK 
CCNTIR 
IT to 

STANDARDS D 
ê 
Y 

OPERATION DESCRIPTION 
31 70 

TOOL 
NUMBER 
71 76 

NC 
TAPE 

7? V, 

Ci»th. 
NO. 

14 16 

WOHK 
CCNTIR 
IT to 

SETUP 
^°^24 MO88S/IOO 

29 M 

D 
ê 
Y 

OPERATION DESCRIPTION 
31 70 

TOOL 
NUMBER 
71 76 

NC 
TAPE 

7? V, 

Q.IÙ f5,c.4 
1 

• f ' 

1 i 1 
1 

1 j • 
1 
1 

(W 1 
' 1 ' , ^\8(f 

1 1 1 ' i ' 
1 

1 
11 • 

1 
, I, 

f 
1 1 t 

tfto 
1 

1 
' 1 ' 

1 

1)56 ?5̂ /J 
I 

1 1 1  . CJpB , , , , \ 
t 

• 11 

OSfi sm 
1 

1 1 1 I 

, , 'P 1 
' t ' 

999 
1 

. 1 • 
1 

1 ! 
1 

. 1. 
1 

1 • 1 1 
. , 1 1 1 

1 
11 • 

1 

1 I 1 1 1 
1 . ! 1 

! 
1 1 1 J » 1 • 1 1 1 1 1 1 1 1 1 1 1 1 1 1. i 1.1 1 1 1.1 1 1 it 1 j_i . 

• XI NO 3003*7 

FIGURE 19. Example of process routing 



www.manaraa.com

55 

The process routing describes all the operations necessary to 

complete the steps of machining a particular part, in the order in 

which the steps must be completed. Also shown are the the work centers 

where the work is to be carried out. 

The information needed for the PFA analysis is the sequence of 

machine centers. The processing requirements of the parts on the 

machines are specified by the incidence matrix representation. If 

there are two different operations on the same machine center, only the 

machine center is selected as entry to the incidence matrix. The 

method of generating the incidence matrix was discussed in detail in 

the PFA analysis of Chapter III. 

D. Combining Data Sets 

There are three different data sets which were from different 

manufacturing organizations. Each company use its own machine code. 

Thus, in order to apply the production flow analysis on these data 

sets, combining three sets was necessary. 

In order to combine those data sets, the machines used in 

production of the parts were identified for each company data set. The 

machines used to manufacture the parts for each organization are shown 

in Tables 1, 2 and 3. It was determined whether there were machines 

which have same function among the three companies. Such machines were 

combined as one machine center. For example, all lathes were combined 

even if those machines were manufactured by different companies. 
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The new machine code was established which was applied to all data 

sets. A total of 38 machines was selected to represent the machines 

used in three manufacturing organizations. Table 4 shows the new 

machines and corresponding codes selected for this research. The 

process sequences were accordingly adjusted for all data according to 

new machine codes. 
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1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
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19 
20 
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22 
23 
24 
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26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
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Machine lists of Fisher Controls Corporation 

Machine Description 
Code 

0 
1 Furnace 
2 
3 
12 
131 Gisholt IL Turret Lathe - AC 
133 Gisholt 2L Turret Lathe Masterline Saddle type 
139 Gisholt 2L Turret Lathe 
144 Gisholt #5 Turret Lathe-Chucker 
176 J St L #5 Turret Lathe Ram Type 
177 J Sc L #5 Turret Lathe Universal Ram Type 
178 J s> L #5 Turret Lathe Universal Ram Type 
180 W Sc S 2A Turret Lathe 
181 W & S 2A Turret Lathe 
189 w SI S 2A Turret Lathe 
191 w & S #2 Bar 
192 w St S #5 Turret Lathe-Chucker 
193 w Sc S Turret Lathe-1 1/2" Bar Capacity 
196 w Se S Turret Lathe-AC 
197 w Sc s Turret Lathe-2" Bar Capacity 
231 Gisholt 12V Vertical Automatic Lathe 
291 W Sc s 2AB Turret Lathe - Single Spindle Bar 
293 W Sc s 2AC Turret Lathe - Single Spindle Chuck 
294 W Sc s lAC Turret Lathe- Automatic Chucker 
295 W Sc s 4AC Turret Lathe - Chucker 
297 W Sc s 2AC Turret Lathe - Single Spindle Chuck 
298 W Sc s 3AB Turret Lathe - Single Spindle Bar 
311 B Sc s #00 Ultramatic Screw Machine 
314 B Sc s #2 Ultramatic Screw Machine 
319 B St s #2 Automatic Screw Machine 
320 B Sc s #00 Automatic Screw Machine 
321 B Sc s #2 Automatic Screw Machine 
322 B Sc s #2 Automatic Screw Machine 
330 Citizen Cincom F12 Lathe 
344 New Britten Multi-Spindle Lathe (From Mckinney) 
348 
392 W Sc s 1 1/4" 6 Spindle Automatic-Bar 
393 W Sc s 2 1/4" 5 Spindle Automatic-Bar 
412 Avey #2-2 Spindle Drill 
413 Avey MA-8 - 2 Spindle Drill 
414 Avey #2MA-6 - 4 Spindle Drill 
415 Avey #lBMA-4 - 6 Spindle Drill 
416 Avey #2-8 Spindle Drill 
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46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
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(continued) 

Machine Description 
Code 

421 Burgmaster 2BH Six Spindle Drill 
422 Burgmaster 2BH Turret Drill 
423 Burgmaster Econocenter T-330 
426 Burgmaster 3BH Auto TD 
429 Burgmaster Economaster VTC 
431 Carlton Radial Drill 4' 
432 Carlton Radial Drill 3' 
434 Carlton Radial Drill 3A 
438 Baker 18HU Horizontal Drill 
442 Cincinnati 24" Bickford Drill 
454 Snow DR-2 Drill 
456 Powermatic 1200-217 Floor Drill 
462 Natco G316 Multispindle Drill 
463 
465 Natco G3b Multispindle Drill 
466 Natco H6 Multispindle Drill 
467 Natco F2B Multispindle Drill 
468 Natco F58 Multispindle Drill 
469 Natco F4B Multispindle Drill 
521 Monarch Toolmakers Lathe-EE 
528 Monarch 1610X30 Engine Lathe 
536 Monarch 1610X30 Engine Lathe 
550 Hardinge Superslant CNC Lathe 
560 Churchill CTC4 Chucking & Bar Machine 
561 Churchill CTC4 Chucking & Bar Machine 
562 
635 K & T 307 S-12 Mill 
636 K & T #3 D Milwaukee Mill 
642 Nichols Twin Mill 
722 Natco Model A-62 Hone 
730 Hegenscheidt Roller Finisher 
754 Greenard Arbor Press 
755 Hannifin 25T Utility Press 
762 Hartford Double End Tap 
764 Davis & Thompson Shuttle Index 
781 
784 Hardinge HSL-59 Speed Lathe 
840 W & S 2SC Single Spindle 
841 W St S 50-17 N/C Hexagon Turret Lathe 
842 W & S SC-15 N/C 2 Slide Turret Lathe 
846 
851 Toyoda Horizontal Machine-Center 
860 L & S 1540 Chucking Lathe 
862 L & S PT 40 
864 L & S CNC 12/25 BC 
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(continued) 

Machine Description 
Code 

866 L Se S CNC 12/25 BC 
903 Denison DM4-C64 Multi-press 
912 Landis 1" Threading Machine 
914 Pines End Finishing Machine 
945 ALMCO DB-200 Deburr & Finish Machine 
954 Gravitron Punch 
959 ALMCO Spindle Deburr 
966 
971 Electroless Nickel Line 
972 Zinc Painting Line 
973 
975 
4000 
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Machine lists of Rockwell International Company 

Machine Description 
Code 

300 
350 
370 
400 
500 
503 

600 
650 
700 
710 
720 
730 
800 
5100 Moore N/C - Jig Bore 
5200 Moore Jig Borer 
7400 DI-ARCO Power Brake 
14102 
17104 Hammond Buffer 
33200 Monarch Engine Lathe 
33300 Monarch Engine Lathe 
34200 Monarch T-Lathe 
34206 Monarch T-Lathe 
34300 W & S Turret Lathe 
34400 J & L T-Lathe 
35200 Lodge & Shipley N/C Lathe 
37200 
37203 
38000 
39000 
39100 Bridgeport Universal Mill 
39118 Gorton Universal Mill 
39200 Van Norman Universal Mill 
40300 
40401 
41800 Gorton Pantomill 
42201 Bridgeport Machining Center 
42401 Bridgeport N/C Vertical Mill 
43300 Lindberg Heat Treat Oven 
43600 
44100 Famco Arbor Press 
47200 
48100 
48300 
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68 
69 
70 
71 
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76 
77 
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79 
80 
81 
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(continued) 

Machine Description 
Code 

49100 
50300 Leland Gifford Drill Press 
53602 Ahmer Hole Locator 
55121 Pratt & Whitney N/C Drill 
56100 Whitney Jenseon Kick Press 
57410 
58300 
58400 
58500 Version Punch-PS 
59200 Behrens N/C Punch Press 
60200 DI-ACRD Power Notcher 
62100 
64400 Silk Screen 
66200 
67100 6" Belt Sander 
67301 6" Belt Sander 
67501 9" Belt Sander 
67503 16" Belt Sander 
68100 Liquid Honer 
68710 
69904 Deburring 
71100 Tumbler 
73100 Die Filer 
75200 14" Band Saw 
75300 
76300 Sheet Metal Saw 
76308 
82200 Shear 
82300 Power Shear 
90420 
91199 
91400 
91410 
91420 
91421 
92100 Degreaser 
93100 OXY-Ace. Welder 
94000 
95900 Spot Welder 
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TABLE 3. Machine lists of Caterpillar Company 

No. Machine Description 
Code 

1 4832 
2 622782 De VLIEG 3H-48 Jigmill 
3 623175 
4 626922 CIM-X 720 Pallet Shuttle 
5 627583 Madison Rotary Grinder 
6 660678 Hoefer Single Spindle Reamer 
7 661191 
8 661192 
9 662726 Micromatic Hone #723 
10 662794 
11 663137 Ex-Cell-0 Boring Machine 
12 663572 
13 663787 Carlton 4'11" Radial Drill 
14 663794 Magnus Aja Lif 
15 663952 Cin Duplex Mill 430-184 
16 664113 Warner and Swasey Lathe 2AC 
17 664223 Clausing Drill Press 
18 664382 ICM Super Blast Honer 
19 664832 
20 664834 ICM Superhone 
21 665180 Dehoff Gun Reaming Machine 
22 665291 Oloffson 2-Spindle Boring Machine 
23 665952 W Sc S 2-SC Turret Lathe 
24 665959 CIM-X 720 
25 666017 CIM-X 720 
26 666018 CIM-X 720 
27 666086 CIM-X 720 
28 666605 ICM Superhone 
29 667031 Sidley Vertical Sizing Machine 
30 667246 CIM-X 720 
31 667301 
32 667592 CIM-X 720 
33 667663 CIM-X 720 
34 667793 Sherwood 6' Rotary Washer 
35 667952 
36 667959 CIM-X 720 
37 668065 Cinn Plain Mill 
38 820024 
39 823838 
40 827042 
41 827438 
42 828450 
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New machine list and code 

Machine Description 
Code 

01 Bar machine 
02 Bore 
03 Buffer 
04 Deburr 
05 Die filler 
06 Turret-Drill 
07 Radial-Drill 
08 Horizontal-Drill 
09 Multispindle-Drill 
10 Drill (include N/C drill) 
11 Finisher 
12 Furnace 
13 Grinder 
14 Honer 
15 Index machine 
16 Turret-Lathe 
17 Engine-Lathe 
18 Lathe 
19 Multispindle-Lathe 
20 Machine center 
21 Mill 
22 Notcher 
23 Power Brake 
24 Press 
25 Reamer 
26 Riveter 
27 Sander 
28 Saw 
29 Screw machine 
30 Shear 
31 Silk screen 
32 Sizing machine 
33 Tap 
34 Treading machine 
35 Tumbler 
36 Welder 
37 Washing machine 
38 Turning machine 
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V. GRIPPER DESIGN METHOD 

A. Introduction 

Many universal hands have been developed recently and include a 

gripper with multi-fingers, soft fingers and elastic fingers. However, 

these grippers are not suitable for assembly because of their slow 

movement, low reliability and marginal positioning accuracy [2]. 

Grippers with two fingers are the most popular in manufacturing 

industries because of their high reliability and good positioning 

accuracy. It has been estimated that from 60 to 70 % of all parts can 

be handled by two fingers. An additional 20 to 30 % can be handled by 

three fingers. Remaining parts require four or more fingers or other 

special types of grippers [4]. 

This research has dealt with the basic analysis of grippers from 

the viewpoints of geometry, statics and features necessary to handle 

the parts within classified families. Group technology has been used 

to form part families and derive the geometrical and dimensional 

information of each part family. 

One goal of this investigation was to determine to what extent the 

defined part families can be grasped by Quick-Tool-Changing (X-change) 

robotic gripper sets. All four sets of part families are, by varying 

degrees, functions of part geometries. For example, one family or 

families might consist of parts with cylindrical geometries as shown in 

Figure 20. Other families might consist of sheet metal parts, parts 

that are milled, and those with other types of part geometries. 
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FIGURE 20. A cylindrical family of parts 
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To define a gripper for each part family, the shape of jaw was 

determined based on geometrical characteristics of each part family. 

This was followed by an analysis of the geometrical parameters which 

govern overall dimensions and a discussion of the rules for selecting 

these parameters to achieve compact jaw designs. 

In this chapter, the specifications of selected gripper type for 

this research are described first. This will be followed presentation 

the criteria defining successful grips. The selection rules which 

define the best gripper for each family are also presented. 

B. Gripper Specifications 

1. Overview 

The various control aspects of the gripper mechanism have evolved 

along with the development of robot controllers in general. To date, 

only three methods of gripping an object are available. These include 

the following: 

• Mechanical grippers 

• Suction grippers 

• Magnetic grippers 

Mechanical grippers with two fingers are most widely used in 

industry. Schafer and Malstrom [59,60,61] showed that two finger 

grippers with parallel finger motion and twin plane fingers can handle 

many different part geometries. There are two ways of constraining the 

part in these types of grippers. The first is by physical constriction 
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of the part within the fingers. In this approach, the gripper fingers 

enclose the part to some extent, thereby constraining the motion of the 

part. This is usually accomplished by designing the contacting 

surfaces of the jaws to conform to the approximate shape of the part's 

geometry. 

The second way of holding the part is by friction between the 

fingers and the part. With this approach, the fingers must supply a 

force that is sufficient to permit friction to retain the part against 

gravity, acceleration, and any other force that might arise during the 

holding portion of the work cycle. The fingers, or pads attached to 

the fingers which make contact with the part, are generally fabricated 

out of a material that is relatively soft. This tends to increase the 

coefficient of friction between the part and the contacting finger 

surface. It also serves to protect the part's surface from scratching 

or other damage. 

In this research, a two finger mechanical gripper, a suction 

gripper, and a magnetic gripper were considered as possible grippers 

for each part family because of their popularity and commercial 

availability. The various jaw shapes of the two fingered gripper are 

also considered as a way of constraining a part in this research. The 

specifications and characteristics of these grippers are described in 

detail in the following sections. 
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2. Mechanical grippers 

Grippers with one degree of freedom are very popular because of 

their simple structure and light weight. Thus, the grippers with two 

fingers have been considered in this research. 

There are two types of finger motion with these mechanical 

grippers. The types of finger motion include a parallel motion and a 

rotational motion. These two motion types are shown in Figure 21. In 

this research, the parallel motion finger was selected for the gripping 

method because it is simple and more widely used gripping mechanism. 

Various jaw shapes for the two finger gripper have also been 

considered. The jaw shapes included in this study include a plane jaw, 

one with a semi-circular shape, and one with a V-notch shape. The 

dimensions of these fingers are shown in Figure 22. 

In all combinations with two out of the three selected shapes, the 

following six grippers can be formed: 

• Gripper with twin plane fingers (P-P type) 

• Gripper with twin semi-circular notch fingers (C-C type) 

• Gripper with twin V-shape notch fingers (V-V type) 

• Gripper with one plane finger and one semi-circular shape 
finger (P-C type) 

• Gripper with one plane finger and one V-shape finger (P-V 
type) 

• Gripper with one semi-circular shape finger and one V-shape 
finger (C-V type) 

The corresponding gripper shapes are shown in Figure 23. Among these 

six jaw shapes, grippers with the "C-C", "V-V", and "V-P" 
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(a) 

(b) 

(a) equivalent torque (Mj. - M]^) 

(b) equivalent displacement (Sj. = S]^) 

Mp, input torque 

S J., angle of rotation 

FIGURE 21. Two types of finger motion 
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V 

Semi-circular notch finger 

V-shaped notch finger 

Plane finger 

FIGURE 22. Dimensions for three kinds of fingers 
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configurations lend themselves toward grasping cylindrical parts. For 

rectangular parts, grippers with the "p-p" jaw shape are best. Thus, 

the following four gripper configurations were selected for analysis in 

this study; 

• Gripper with C-C type jaws 

• Gripper with V-V type jaws 

• Gripper with V-p type jaws 

• Gripper with P-P type jaws 

Schematic representations of these four jaw configurations are shown in 

Figure 24. 

3. Vacuum Gripper 

For handling parts made of sheet metal plates, vacuum has been 

used as the gripping force in many tooling applications. The part can 

be lifted by vacuum cups incorporated into the end-of-arm tooling. The 

lifting force is a function of the degree of vacuum achieved and the 

size of the area on the part where the vacuum is applied. 

The most frequently used vacuum gripper uses suction or vacuum 

cups to hold the desired part. The gripper can have a single vacuum 

cup or a multiple pattern of pickup cups. In this study, a vacuum 

gripper with a single cup was selected. The usual requirements on the 

objects to be handled are that they be flat, smooth, and clean. This 

results in conditions necessary to form a satisfactory vacuum between 

the object and suction cup. The specifications of a vacuum pad are 

shown in Figure 25. 
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C-C jaw shape p-v jaw shape 

V-V jaw shape V-C jaw shape 

P-P jaw shape P-C jaw shape 

FIGURE 23. Six grippers with different jaw shapes 
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V-shaped and plane Jaws 

w 

Twin plane Jaws 

FIGURE 24. Schematic views of four types of a gripper 



www.manaraa.com

74 

FIGURE 25. Dimensions of a vacuum pad 
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If the area of a vacuum pad is held constant, the suction or pull 

exerted by the pad is directly proportional to the air pressure outside 

the pad less the air pressure inside the pad. The effective pressure 

difference, AP, can never exceed the local air pressure. Because of 

leakage into the pad, the gripping force will often be far less than 

ambient air pressure. 

Another limitation is that the pads may not exceed the size of the 

flat surface with which they must interface. Flatness is also a 

criterion, in that vacuum pads can accommodate very slightly curved 

surfaces, but the curve must be very slight indeed. Any generic 

irregularity part that interferes with the lip of the vacuum pad will 

defeat the vacuum action and prevent any lifting capability. 

4. Magnetic gripper 

Magnetic grippers have been regarded as a very feasible means of 

handling ferrous materials. Parts made of steel, excluding certain 

types of stainless steel, are suitable candidates for this means of 

handling, especially when the materials are handled in sheet or plate 

form. 

In general, magnetic grippers offer the following advantages in 

robotic handling applications; 

1. Pickup times are very fast 

2. Variations in part size can be tolerated 

3. They have the capability to handle metal parts 
with holes 

4. They require only one surface for gripping 



www.manaraa.com

76 

There are some disadvantages with these grippers. Disadvantages with 

these grippers include the residual magnetism remaining in the part 

which may cause a problem in subsequent handling, and the possible side 

slippage and other errors which limit the precision of this means of 

handling. Another potential disadvantage of a magnetic gripper is the 

problem of picking up only one sheet from a stack. 

Magnetic grippers can be divided into two categories, those using 

electromagnets, and those using permanent magnets. Electromagenetic 

grippers are easier to control, but require a source of dc power and an 

appropriate controller unit. Permanent magnets have the advantage of 

not requiring an external power source to operate the magnet. However, 

there is a loss of control that accompanies this apparent advantage. 

For example, when the part is to be released at the end of the handling 

cycle. Some means of separating the part from the magnet must be 

provided. The device which accomplishes this is called a stripper or 

stripping device. Its function is to mechanically detach the part from 

the magnet. 

In this research, the magnetic gripper with permanent magnets was 

considered as a mean of handling of flat sheet metal parts. It is 

assumed that there is some means of separating the part from the 

magnet. 

Summary 

Many features or characteristics of grippers can be considered as 

design factors to improve gripper versatility. This research has 
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investigated these features in the design of gripper sets to handle 

different families of part geometries. 

Mechanical grippers with two fingers, a gripper with a suction cup 

and a magnetic gripper were considered in this study. For mechanical 

grippers with two fingers, different jaw shapes were also considered. 

Thus, a total of six different types of grippers were evaluated. These 

included the following: 

- Two finger grippers with parallel finger motion 

. C-C jaw shape 

. V-V jaw shape 

. V-P jaw shape 

. P-P jaw shape 

- Suction gripper 

- Magnetic Gripper 

The criteria for successful grips for the six grippers are 

explained in the next section along with the criteria used to determine 

the design parameters for each gripper. 

C. Gripper Configuration Methods 

1. Overview 

The part families obtained in this research had different part 

geometries. A gripper was configured for each part family. The 

gripper configuration began with selection of jaw shape based on the 

geometry of the part family. The dimensions of the gripper with the 

selected jaw shape were determined by using criteria for successful 

grips. 
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In the following sections, the selection methods of the jaw shape 

are presented. The criteria for successful grips are then explained. 

Finally, the geometrical analyses for the selected grippers are 

presented. 

2. Determination of jaw shape 

In order to define a best gripper for each part family, a jaw 

shape was selected first based upon geometrical characteristics of each 

part family. The first five digits of the Opitz system show 

geometrical characteristics of a part. The five digits show the 

following geometrical characteristics: 

• The part's class. 

• The overall or main shapes. 

• The rotational surface machining. 

• The plane surface machining. 

• The auxiliary holes, gear teeth, and forming. 

Each part family obtained from the cluster analysis is provided 

with the geometrical codes of the Opitz system representing the 

geometrical characteristics of the family. The jaw shape is then 

determined based on the geometrical characteristics. 

For example, the first digit of the Opitz coding and 

classification system represents the part's class. The shapes included 

in the first digit are rotational parts without deviations, rotational 

parts with deviations, rectangular parts, long parts, and flat parts 

[47]. Thus, the overall shape for the part family can be the 
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geometrical shape determined by the code number of the first digit with 

which a large number of parts are classified. 

If a gripper is designed with different jaw shape other than a 

plane finger, the contacting of surfaces of jaws should be in the 

approximate shape of a part to constrain it physically. Thus, each jaw 

shape can handle limited part geometries. Table 5 shows the gripper 

type and the corresponding part geometries to be handled. 

TABLE 5. Gripper types and part geometries to be handled 

Gripper 

Gripping 
method 

type i 

Jaw 
shape 

Part geometries to be handled 

Mechanical 
C-C type 
V-V type 
V-P type 
P-P type 

Cylindrical external shape 
Cylindrical external shape 
Cylindrical external shape 
Rectangular external shape 

Suction Flat (light metal sheet, 
gripping area is flat, no holes on 
the gripping area) 

Magnetic Flat (metal sheet) 

The jaw shape of a gripper was defined according to the selected 

overall shape of each part family by applying the rules shown in Table 

5. The dimensions of the selected gripper were then decided from the 

maximum and minimum dimensions and maximum weight of the family. 
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3. Criteria for successful grips 

In defining gripper features, it is useful to complete a geometric 

and static force calculation of the gripper and the object being 

grasped together. Chen [11] has described the conditions for the 

successful design of a gripper. This research has adopted these 

conditions. The following conditions should be satisfied for 

successful grips: 

• The geometry of a part should be enclosed within the jaw 
shape. 

• The gripper must have suitable opening range to fit the part 
to be gripped. 

• The gripper should produce enough force to lift the maximum 
weight of the part. 

• The gripper should not produce excessive force that cause 
physical deformation. 

• The weight of the gripper and the space it occupies should be 
as small as possible. 

These conditions were selected as the criteria for determining the 

specifications of the grippers' dimensions. The first two conditions 

relate to the geometrical characteristics of part families. The third 

and fourth conditions relate to the gripping force required by the 

selected gripper type to handle maximum weight of a part within part 

family. The last condition was used to select the best gripper 

configuration if two or more grippers could be configured for a certain 

part family. 

These criteria are presented for two finger mechanical grippers in 

the next section. For the suction and magnetic grippers, it is assumed 
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that no slippage occurs due to the part geometry and the shape of 

gripper. Therefore, the criteria for these types of grippers is a 

gripping force sufficient to lift required part weights. Both 

geometric and static conditions for successful grips are described in 

the following sections. 

4. Geometrical conditions of successful grips 

The best characteristic which defines the geometrical condition of 

successful grips is that the fingers should grip a full range of 

dimensions. Each part family contains data on the maximum and minimum 

dimensions; length and diameter for rotational parts, and lengths of 

the part's edges for non-rotational parts. 

In order to consistently design grippers for different part 

geometries, specific gripping conditions must be defined. The 

conditions used in this research are listed below: 

• The gripping surface applies a force along an axis that passes 
through the center of gravity of the part. 

• The gripping force is applied on the outside of the part. 

• The contact points or area are the same for all types of 
grippers. 

The P-P jaw shape is simple and most widely used in many 

industrial robots. This jaw shape can be used to handle rectangular 

parts. The dimensions of the jaw shape are shown in the Figure 26 

along with the part to be handled. Because no shapes are involved with 

this type of jaw, the dimensions to be configured are the length of 

finger, ^p, and maximum opening range, Bgpgj^. In order to grip full 
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range of dimensions obtained from a part family with this type of jaw, 

the following condition must be satisfied: 

®open - ̂max ( 

where 0^^% = Maximum dimension obtained from a part 
family 

The semi-circular notch (C-C) finger is used to handle mostly 

cylindrical parts. From the jaw shape, shown in Figure 26, it is 

obvious that the radius of the semi-circular notch, r^, must be larger 

The diameter of a cylindrical part was selected from the 

dimensional characteristics of part families. Dimensions to be 

determined for this jaw shape are the length of the finger, the 

radius of the semi-circular notch, r^, the depth of the notch, XQ, and 

the maximum opening range, In order to grip full range of 

dimensions obtained from a part family with this type of jaw shape, the 

following conditions must be satisfied: 

than 

^o - Dmax/2 max- (4) 

^o - Dmin/2 mm' (5) 

B, 'open ^ D, max + 2X, o (6) 

where: D, max = Maximum dimension obtained from a 
part family 

= Minimum dimension obtained from a 
part family 

^min 
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V-V Jaw 

FIGURE 26. The dimensions of jaw shapes and parts to be handled 
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The dimensions for the V-V jaw shape are shown in Figure 26 along 

with the part to be handled. The dimensions to be configured for this 

jaw shape are then the length of the finger, the angle of the V-

shaped notch, e^, the depth of the notch, and the maximum opening 

range, In order to grip full range of dimensions obtained from 

a part family with this type of jaw, the following conditions must be 

satisfied: 

^tmax ~ C^in/Zsinet (7) 

%tmin = Dmax*coset/2*tanEt (8) 

°min/°max O) 

®open - ̂max ^^t (^0) 

where: Dn,-„ = Maximum dimension obtained from a 
part family 

Dmin = Minimum dimension obtained from a 
part family 

^tmax ~ Maximum depth of the notch 
Xtmin ~ Minimum depth of the notch 

The dimensions for the V-P jaw shape are shown in Figure 26 along 

with the part to be handled. The dimensions to be configured for this 

jaw shape are the length of the finger, ^p, the angle of the V-shaped 

notch, 6p, the depth of the notch, Xp, and the maximum opening range, 

Bopen* III order to grip full range of dimensions obtained from a part 

family with this type of jaw, the following conditions must be 

satisfied: 
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\ pmax (l+sin6p)Dmin/2*sinep (11) 

^pmin ^max *coscp/2*tan6p (12) 

sincp = (D, 'max ^min (13) 

B, 'open > D, max + X, p (14) 

where 0^^% = Maximum dimension obtained from a 
part family 

^min ~ Minimum dimension obtained from a 
part family 

Xpmax ~ Maximum depth of the notch 
Xpjnin = Minimum depth of the notch 

1. Overview 

This phase of this study addresses the determination of the 

percentage of parts within each part family that may be successfully 

grasped by the X-change robotic gripper set previously described. Four 

sets of part families will exist: one for each of the coding and 

classification schemes previously described. Four sets of robotic 

grippers will also exist for each defined part family. The "best" 

gripper set must be selected for the part family among the gripper 

types chosen for this research. The percentage of parts within each 

part family that can be successfully grasped must also be determined 

for each gripper/family combinations. These selection methods are the 

subject of the following sections. 

D. Gripping Evaluation 
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2. Determination of successful grips for a part 

In order to define a "best" gripper for each part family, a 

gripper from gripper types selected for this research was chosen based 

upon geometrical characteristics and the dimensions of each part within 

each family. The successful gripping criteria discussed in the 

previous sections were applied in making each selection. 

The conditions of successful grips for each part were defined 

based on the criteria discussed previously. The following conditions 

must be satisfied for successful grips; 

• If a gripper is configured with s jaw shape other than P-P, 
the contour of the part must be enclosed within the shape of 
the jaw. 

• The maximum dimension of the part must be in the range of the 
maximum opening distance, Bopen* 

• The weight of a part must be less than the maximum weight 
determined by the part family. 

The last condition was derived from the gripping force requirements of 

the criteria of the successful grips. The criteria stated that the 

gripping force must be enough to lift the maximum weight of a part. 

The force must not produce excessive force to cause physical 

deformation. These requirements usually have been satisfied by 

developed gripping mechanisms. In this research, it is assumed that 

the gripping mechanism is available to lift the maximum weight of a 

part within a part family. 

For each part within a part family, the following characteristics 

were determined: 

• The overall shape 
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• The shape of the contact point or area 

• Rotational machined surfaces machining 

• Plane machined surfaces machining 

• Auxiliary holes, gear teeth and forming 

• Dimensions 

• Weight 

By using the these geometrical characteristics and dimensional 

characteristics of a part, a determination can be made whether the part 

can be successfully grasped by the gripper configured for the family. 

3. Gripper evaluation within a part family 

The percentage of parts within each family that can be 

successfully grasped was determined for each part family with each 

gripper set. This analysis was completed for each of the four sets of 

part families corresponding to the different coding and classification 

methods. The coding and classification method(s) with the highest 

percentages of parts successfully grasped identify the approach that is 

best in terms of number of parts successfully grasped by the robotic 

gripper set. 

For each part within a family, a determination was made as to 

whether the part could be successfully grasped by the robotic gripper 

assigned to the family of parts. In each case, the contact points 

between the part and the gripper were specified such that no 

interferences would occur at later assembly operations. The pick-up 

orientation of the part in relation to the gripper was specified as 

well. 
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4. Summary 

The specifications and corresponding successful gripping 

conditions of the grippers selected for this research have been 

explained in this chapter. Among those selected grippers, the best 

gripper for each part family is selected based on the information of 

the part family. In selecting the gripper, the following criteria are 

applied: 

• The gripper which can lift the maximum weight of a part within 
a family with minimum gripping force is selected. 

• The gripper which can grasp the maximum and minimum of 
dimensions of a part within a family is selected. 

• The gripper whose dimensional parameters are the smallest is 
selected to make the gripper compact. 

Once the best gripper is selected for each family, there will be 

limits of parameters of the gripper which can grip and lift a part. 

The parameters are the geometry of a part, a dimensions of part and a 

friction force. If those parameters of a part are within ranges of 

limits, the part is grasped successfully. 
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VI. DEVELOPMENT OF COMPUTER SOFTWARE 

A. Introduction 

In spite of a large number of applications where the 

classification and coding techniques could be used very efficiently, 

such use is, unfortunately, not widespread. The classification and 

coding of manufactured parts has reached the point where there is a 

need for some mechanical aid to sort the data. Even though a computer 

can be used in all standard clustering techniques which are employed 

for hierarchical part family formation, only a very small number of 

parts can be handled without using efficient sorting algorithms. More 

efficient sorting algorithms have been implemented in the two types of 

clustering analysis used in this research. 

To analyze the geometrical characteristics of part families in 

designing a standard robotic gripper set, data for 272 manufactured 

parts were collected from four different manufacturing organizations. 

As described in Chapter III, four coding and classification methods 

were selected to define part families. Computer software was developed 

to analyze the collected data by using BASIC language. Program 

listings for the developed software are presented in Appendix A. 

The software programs include the production flow analysis (PFA) 

analysis, the Opitz coding and classification system and two clustering 

analyses; the rank order cluster analysis (ROCA), and the cluster 

analysis with similarity coefficients (CASC). The computer software 
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for these four coding and classification methods is the subject of this 

chapter. 

B. Computer Software for PFA 

1. Overview 

Production flow analysis (PFA) is one method of group technology 

which has particular appeal in that it requires no special part coding 

system. It is relatively simple to implement and can be applied to the 

reorganization of existing, as well as the design of new manufacturing 

systems. With PFA, the majority of components and machines must 

already belong to clearly defined families and groups. The problem is 

to find these existing families and groups. 

The PFA method requires only the use of route sheets for 

identification of part families. Two clustering algorithms, the ROCA 

and CASC, are applied to the PFA method to form part families. 

2. General procedures 

As discussed in Chapter III, the PFA method consists of four major 

analysis stages. Two clustering algorithms, suitable for computer 

applications, were applied at the group analysis stage. The computer 

software for the two clustering algorithms is explained later in this 

chapter. The four analysis stages were implemented together with the 

two clustering analyses in the software. This defines the first two 

coding and classification methods; PFA/ROCA and PFA/CASC. 
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The first three stages of the PFA method are known as factory flow 

analysis. The objective of this analysis is to find the simplest and 

most efficient inter-departmental flow. Burbidge has suggested the 

following seven steps for the factory flow analysis [5]: 

1. Divide into departments. 

2. Allocate plant to departments. 

3. Draw basic flow chart. 

4. Determine the process sequence for each part. 

5. Analyze the sequences by the process route number. 

6. Study exceptions and eliminate them where possible. 

7. Plan the inter-departmental flow system. 

Steps 4, 5, and 6 were implemented because the objective of using 

the PFA method in this research was to form part families. The other 

steps were not implemented in the software because these steps are 

usually used to divide the plant into associated groups of machines. 

The final stage, called also group analysis, considers each 

department in turn and seeks to find the best division of their parts 

into families and of the plant into associated groups of machines. 

Burbidge has suggested the following eight main steps for this analysis 

stage [5]: 

1. Renumber operations on route cards. 

2. Sort routes into packs. 

3. Draw pack/machine chart. 

4. Find families and groups. 

5. Check load and allocate plant. 
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6. Investigate exceptional cases. 

7. Specify groups and families. 

8. Draw final flow system network and check. 

Steps 4, 6, and 8 have been implemented because this research 

again addressed on the formation of part families. At step six of the 

group analysis, the "exceptional cases" included machine centers 

required by only a few parts or parts which required operations on two 

different identifiable machine centers. When these cases occurred 

after each application of clustering algorithms, the corresponding 

machines and parts were eliminated from the analysis. This is because 

a block diagonal form of final part-machine matrix did not exist for 

those machines and parts. 

The following six steps were implemented in the PFA method in this 

research. 

1. Determine the process sequence for each part. 

2. Analyze the sequences by the process route number. 

3. Study exceptions and eliminate them where possible. 

4. Find part families and their corresponding groups of machine 
by using a clustering algorithm. 

5. Investigate exceptional cases. 

6. Specify groups and families. 

The six steps comprised the four analysis stages in the PFA method. 

The implementation of those steps in the computer software is explained 

in the next section. 
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3. Implementation of PFA coding method 

As discussed in the previous section, six steps were implemented 

to code the combined data set based on the process routing. The 

following six steps were considered in this research: 

Step 1: Find all the machines involved in the manufacture 
of parts 

Step 2: For each particular part, define a sequence of 
machines whose path represents the sequence of 
operations required for the manufacturing process. 

Step 3: A Part-Machine incidence matrix is formed based on 
the following: 

1: if part i requires machine j 
PMMAT^j = { 

0; otherwise 

Step 4: Perform clustering algorithms (ROCA and CASC) 

Step 5: Investigate the final incidence matrix to see if 
there are exceptional machines. 
If there are no such machines, then stop 
Otherwise, go to Step 6. 

Step 6: Delete those machines and revise the Part-Machine 
incidence matrix. Go to Step 4. 

At step 4, the part-machine incidence matrix is required to 

perform clustering analyses. The matrix contains the information on 

the process sequence of each part. If part i has an operation on a 

machine j, the element (i,j) of the part-machine is recorded as "1". 

Thus, in the development of the software for the PFA method, this 

research concentrated on generating this matrix. Figure 27 shows the 

flow diagrams for this method. 
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FIGURE 27. Flow diagram for the PFA method 
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FIGURE 27. (Continued) 
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FIGURE 27. (Continued) 
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In addition to six main steps required for the PFA method, the 

following subroutines were also implemented to code the parts more 

efficiently; 

1. Subroutine for data entry 

2. Subroutine for reading data file 

3. Subroutine for generating the Part-Machine matrix 

4. Subroutine for generating the machine list 

The coding of the PFA method is illustrated with parts shown in 

Figure 28(a). In order to use the PFA method, the data on the part 

name, the part number, the total number of processes, and the process 

sequence are required. In the subroutine for data entry, these data 

were entered interactively. The data were saved in the following 

arrays : 

pname$(i) : Part name of part i 
pnum$(i) : Part number of part i 
tp(i) : Total number of processes of part i 
route(i,j): Process route of part i and jth sequence 

Once all the data required for the PFA method is entered, it is 

saved on the data file "PARTS.DAT". The list of machines used in all 

the parts is generated automatically by the program. The array mach(i) 

holds the list. The part-machine incidence matrix is formed based on 

the list. The machines used to manufacture the example parts are shown 

in Figure 28(b). 

The part-incidence matrix formed for the example parts is shown in 

Figure 28(c). The columns of the incidence matrix represent the 

machines used. The rows of the incidence matrix represent the parts. • 
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Total 
Part Part # of Process 
name number processes sequences 

AA 01 3 2 3 5 
BB 02 2 1 4 
CC 03 2 2 3 
DD 04 2 1 4 
EE 05 1 1 
FF 06 2 1 4 
GG 07 2 3 5 

(a) The input data for the PFA method 

Machine list Machine name 

Sandblast Plating 
Horizontal Bandsaw 
Lathe 
Drill Press 
Milling Machine 

(b) The machine list obtained from the data. 

Machine 12 3 4 5 
Part 

AA • 0 1 1 0 1 
BB 10 0 10 
CC 0  1 1 0  0  
DD 10 0 10 
EE 1 0 0 0 0 
FF 10 0 10 
GG 0 0 10 1 

(c) The part-machine incidence matrix obtained for' the data. 

FIGURE 28. Results of the PFA coding method 

V. 
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The entry "1" in the matrix indicates that the part has an operation on 

the machine. The entry "0" indicates that the part has no operation on 

the machine. The two cluster analyses (ROCA and CASC) are applied on 

this matrix to define part families based on process routings. The 

results of this applications of the two cluster analyses are explained 

later in this chapter. 

C. Software for the Opitz System 

1. Overview 

The Opitz system is a manual classification system which has been 

developed to classify parts into groups or families according to 

similar attributes. A code is associated with each individual family. 

The heart of the Opitz system is a coding program which is used to 

establish classification code numbers which identify each workpiece. 

The manual approach is often used to group families of drawings and 

codes for design retrieval purposes. This method is both labor and 

time intensive. The computer software developed in this research 

generates codes for a part in relation to its geometrical and 

technological characteristics; shape, dimensions, tolerances, etc. 

These codes are used to form the part-characteristic incidence matrix. 

The two clustering algorithms were applied on the matrix. 

The logic sequence necessary to derive the specific codes of the 

Opitz system was computerized in the developed software. The software 

queries the user for part attributes used to select the geometrical and 
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technological characteristics of a part. The software generates a 

specific codes of a part automatically after responding to the series 

of questions and making selection among the attributes. 

2. General overview of coding systems 

There are basically two forms of coding and classification system 

structures. The first coding method uses monocodes that are integrated 

with the hierarchical classification. This coding method is the 

integrated, hierarchically oriented code from the less complex, simpler 

coding forms. The second coding method uses polycodes that are not 

integrated within hierarchy of the classification. Examples of these 

two coding methods are shown in Figure 29. 

As shown in the Figure 29, the hierarchical tree structure can be 

formed in the monocode system. Each node represents a specific 

geometrical characteristic of the part. By starting at the main trunk 

of the tree structure and answering questions about a part, the 

specific codes can be obtained in a monocode system. 

In the polycode system, the entire population of parts is 

presented in tabular form. Classification is performed based on a set 

of questions to be asked about each part in the collection. It is 

difficult to form a hierarchical tree structures with a polycode system 

because one code number includes many geometrical features which cannot 

be exclusively defined in this system. Thus, the list of geometrical 

features for each code number is usually presented as a menu in the 

polycode system. By selecting the corresponding geometrical features 
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Monocode 

FIGURE 29. Two coding methods 

Polycode 

Position ^ 

Ext. 
shape 

Int. 
shape 

Size Material 
code 

1 1 0 1 1 A 1 

2 2 1 2 2 B 2 

3 3 2 3 3 C 3 

4 4 3 4 4 D 4 

5 5 5 5 5 E 5 

6 6 8 6 6 F 6 
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of a part from a given menu, the specific code of the part is then 

derived. 

Most classification and coding systems in industrial use are 

hybrids of monocode and polycode systems. Hybrid systems, including 

the Opitz system, have been developed to capitalize on the benefits 

from both basic systems. Thus, hybrid systems use some digits arranged 

hierarchically. Others have a fixed significance, indicating the 

presence of particular attributes. The usual structure of the system 

is for the first one or two digits to divide the population of items 

into the main subgroups as in a monocode system. From this point on, 

each subgroup has its own attribute code or series of fixed-

significance digits. 

For example, in the Opitz system shown in Figure 30, parts are 

first classified into eight subgroups based on their basic shape and 

dimensional ratio. These subgroups are represented by the each nodes 

represented by the first digit of the Opitz system. One query leads to 

the one of these subgroups. The query corresponds the basic shape of a 

part and its corresponding dimensions. For the following four digits 

and four supplemental digits, the hierarchical tree structure cannot be 

formed entirely because several geometrical features are represented by 

one code number of the digits. Both a interactive series of questions 

and a menu for selection of geometrical characteristics can be used to 

computerize this hybrid aspect of the system. 
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ITAR? 

Rotat 
w/o 
dev. 

Rotat Non-
rotat. 

dev 

:ubii lOm 

Externar 
shape & 
•element / 

Overall 
shape 

Overall 
shape 

Princi­
pal 
bore 

Interna: 
shape & 
element 

Rotat 
internal 
shape ) 

Plane 
surface 
mach. 

Plane 
surface 
mach. 

Plane 
surface 
mach. 

ux.hole 
St gear 
teeth 

Aux. ho 
St gear 

. teeth 

,ux. hoi as 
St gear ) 
teeth / 

fupplemenmry 
I Code / 

A = L/D 3 0.5 B = 0.5 < L/D < 3 C = L/D S 3 
D = L/D <2 E = L/D > 2 

where L = length of rotational part 
D = largest diameter of rotational part 

FIGURE 30. Tree structure of the Opitz system 



www.manaraa.com

104 

3. Methods of programming 

While a manual approach can be used with a small database, larger 

databases lend themselves to computerization. The basic idea is to 

computerize the logic sequence necessary to derive a specific code. 

Because the Opitz system is hybrid of two basic systems, a tree 

structure of a series of questions is formed if a monocode system is 

used to define the codes of the Opitz system. If the polycode system 

is used, a list of significant attributes of geometrical and 

technological characteristics (a menu) is given to select a code 

number. 

The first digit of the Opitz system represents a component class 

based on the overall shape. The Opitz system uses the monocode system 

for the first digit. There are three major component classes. These 

include a rotational component without deviation, a rotational 

component with deviation and a non-rotational component. Based on the 

their dimensional ratio, these major classes are divided to designate a 

component class. Thus, the major shape of a part and related 

dimensional information comprise the initial inputs required by the 

software. The digit of the class is next determined based on 

calculated dimensional ratio. 

Once the component class is determined, the following codes are 

determined from either a interactive series of questions or a menu. If 

a hierarchical tree structure in a class can be formed, a series of 
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questions is presented to users. Users can respond "yes" and "no" to 

the series of questions to reach a specific code number for the 

subclass. For example, the second digit of the Opitz system shows a 

external shape and shape elements. The hierarchical tree structure of 

this subclass, shown in Figure 31, can be formed within this class. 

Based on the hierarchical structure, a series of questions can be 

structured to derive the code number within the class. The tree form 

of the series of questions is shown in Figure 32. The numbers shown in 

the square represent the code number of the second digit. 

When a tree structure of a certain class cannot be formed, a menu 

for selection of attributes of the class is presented to users. For 

example, the fourth digit of a rotational component class with 

deviation shows the attributes of a plane surface machining. The 

hierarchical tree structure of attributes cannot be formed because many 

attributes are mixed in one classification number. Thus, the following 

menu is presented to users: 

1: No surface machining 

2; External plane surface and/or surface curved in one 
direction 

3: External plane surfaces related to one another by 
graduation around circle 

4: External groove and/or slot 

5: External spline and/or polygon 

6; External plane surface and/or slot and/or groove, 
spline 

7 : Internal plane surface and/or groove 

8: Internal spline and/or polygon 

V 
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No shape element 

Stepped to one 

No shape elements 

With screwthread 

Rotational component 

L/D <= 0.5 

0.5 < L/D < 3 

end or smooth 

Stepped to both 

With functional groove 

No shape elements 

With screwthread 

without deviation 

L/D >= 3 

end 

Functional taper 

With functional groove 

• 

Operating thread 

• 

Other (functional diameter > 10; 

FIGURE 31. Hierarchical tree structure of the second digit class of 
rotational component without deviation 
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Are there any 
external shapes 

no yes 

Is external 
shape a taper? 

no yes 

Is external shape 
an operating thread'^ 

Are functional 
diameters more 
than ten? 

no yes no yes 

Stepped to one 
end or smooth? 

no yes 

Any shape 
elements? 

Any shape 
elements? 

yes no no yes 

With screw 
thread? With screw 

thread? 
no yes no yes 

Shape elements: Grooves for V-belts, Sealing rings 
Functional tapers and treads. 

FIGURE 32. The hierarchical tree structure of questions 
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9: External and internal splines and/or slot and/or 
groove 

10: Others 

The choice from this menu determines the fourth digit of the code 

number. 

4. An example using a rotational part 

Coding with the Opitz system is illustrated with two examples. A 

part drawing is required to code a part with the Opitz system. The 

drawing for an example rotational part without deviation is shown in 

Figure 33. In addition to the drawing, the part name and part number 

are also required. 

The overall shape of a part is first determined in the Opitz 

system. The shapes includes a rotational part without deviation, a 

rotational part with deviation, and a non-rotational part. For the 

rotational part without deviation and a rotational part with deviation, 

the largest diameter, denoted by D, and the length of the part, denoted 

by L, are required to determine the part's dimensional ratio. For a 

non-rotational part, the lengths of three edges, denoted by A, B, and 

C, are required to determine the part's dimensional ratio. Based on 

the dimensional ratio, the first digit of the part is determined. 

For the part shown in Figure 33, the overall shape is a rotational 

part without deviation because the part satisfies the following 

conditions [47]: 

1. There is only one axis of rotation. 

2. The geometrical axis is identical with the axis of rotation. 
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80 

TD 

(N 

FIGURE 33. A part drawing of an example rotational part without 
deviation 
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3. The cross-section perpendicular to the axis of rotation is 
everywhere circular or angular, or a combination of the two. 

The rotational parts without deviation are further classified into 

three classes based on the dimensional ratio: the length of the 

part/the largest diameter, L/D. The required dimensional ratio for 

each class is shown in Table 6. 

TABLE 6. The required dimensional ratio for the rotational part 
without deviation 

Component class Dimensional ratio 

0 L/D < 0.5 

1 0.5 < L/D < 3 

2 L/D > 3 

The largest diameter and the length of the part were determined as 

D=240 mm and L=80 mm respectively for the part shown in 33. The 

dimensional ratio, L/D, was 0.33. Thus, the first digit of this part 

is "0" because the ratio is less than 0.5. 

The following four digits of geometrical code are determined by 

either answering a series of questions or selecting the corresponding 

geometrical characteristics of a part. The geometrical codes for these 

digits of the rotational part without deviation are shown in Figure 34. 

The second digit for the rotational part without deviation shows 

the external shape and external shape elements. The code number for 
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1st Digit 

Component 
Class 

& 0 5 

0 5 

D 

4  

2n(J Digit 

External Shape, 
external shape 

elements 

Smooth, no shape 
elements 

no shape 
elements 

£l 

"11 

with 
screwthrearf 

with 
functional 

groove 

no shape 
elements 

with 
screwthread 

with 
functional 

groove 

functional taper 

Operating 
thread 

Others 
( 10 functional 

diamoiers) 

GEOMETRICAL CODE 

3rd Digit 

Internal Shape, 
internal shape 

elements 

0  Without through bore 
blind hole 

1 1  
ST. 

no shape 
elements 

2  
(A lu 
5  g  with 

screwthread 

3  
ë -
E 
(/) 

With 
functional 

groove 

4  | s  
r S 

no shape 
elements 

5  ! with 
scrawthimad 

6  II with 
functional 

groove 

7  functional taper 

8  Operating 
thread 

9  
Oihei» 

( 10 functional 
diaiiuilm&l 

4th Digit 

Plane Siirfnce 
Machining 

No surface 
machining 

External plane surface 
and/or surface curved in 

one direction 

External plane surfacr>s 
related to one another by 
graduation around a circle 

External groove 
and/or slot 

External spline 
and/Of Polygon 

External plane surface 
and/or slot and/or 

groove, spline 

Internal plane surface 
and/or groove 

Internal Spline 
«ind/or Polygon 

EKlfirnal and Internal 
splinns and/or slot 

and/or groove 

others 

5th Digit 

Auxiliary Hole(s) and 

Gear Teeth 

No auxiliary 
holels) 

axinl holols) not 
related by a drilling 

pattern 

axial holes 
related by a 

drilling pattern 

radial hole(s) not 
related by a 

driving pattern 

holes axial and/or radial 
and/or in other directions, 

not related 

holes axial, and/or radial 
and/in other directions 

related by drilling pattern 

spur gear 
teeth 

bevel gear 
teeth 

other gear 
teeth 

FIGURE 34. The geometrical codes of rotational part without deviation 
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the digit can be determined by answering a series of questions. This 

is because a tree structure for the series of questions (shown in 

Figure 35) can be formed. For the part shown in Figure 33, the 

external shape is stepped to the left end. No shape elements are 

included in this part. Thus, the code number of second digit for this 

part is determined as "1". The decision processes to derive the code 

number are also shown in Figure 35. 

The third digit of the rotational part without deviation shows an 

internal shape and internal shape elements. The code number for this 

digit can also be determined by answering a series of questions because 

a tree structure of the series of questions, shown in Figure 36 can be 

formed. For the part shown in Figure 33, the internal shape is also 

stepped to the right end. A functional groove is present in the 

internal shape. Thus, the code number of third digit of the part is 

determined as "2". The decision processes to derive the code number 

are also shown in Figure 36. 

The fourth digit of the rotational part without deviation 

considers plane surface machining. A unique series of questions cannot 

be formed for this digit because several geometrical features are 

included in one code number as shown in Figure 34. Thus, the following 

menu of geometrical characteristics for each code number is provided : 

0: No surface machining 

1: External surface and/or surface curved in one direction. 

2; External plane surfaces related to one another by 
graduation around a circle. 

3: External groove and/or slot. 
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Are there any 
external shapes 

no yes 

Is external shape 
a function taper? 

no yes 

Is external shape 
an operating thread? 

Are functional 
diameters more 
than ten? 

yes no no yes 

Stepped to one 
end or smooth? 

no yes 

Any shape 
elements? 

Any shape 
elements? 

no yes no yes 

With screw 
thread? With screw 

thread? 
no no yes yes 

Shape elements : Grooves for V-bélts, Sealing rings 
Functional tapers and treads etc. 

FIGURE 35. The hierarchical tree structure of questions for the second 
digit of the rotational part without deviation 
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Are there any 
internal shapes? 

no yes 

Is internal shape 
function taper? 

no yes 

Is internal shape 
operating thread? 

Are functional 
diameters more 
than ten? 

no yes yes no 

Stepped to one 
end or smooth? 

yes 

Any shape 
elements? 

Any shape 
elements? 

no yes no yes 

With screw 
thread? With screw 

thread? 
yes no no yes 

Shape elements: Grooves for V-belts, Sealing rings 
Functional tapers and treads etc.. 

FIGURE 36. The hierarchical tree structure of questions for the third 
digit of the rotational part without deviation 
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4: External spline and/or slot. 

5: External plane surface and/or slot and/or groove, spline. 

6: Internal plane surface and/or groove. 

7; Internal spline and/or groove. 

8: External and internal splines and/or slot and/or groove. 

9: Others 

For the part shown in Figure 33, an external plane surface 

machining is present. Thus, the code number of fourth digit of the 

part is determined as "1". 

The fifth digit of the rotational part without deviation considers 

an auxiliary hole(s) and gear teeth machining. The geometrical 

characteristics of each code number are shown in Figure 37. A unique 

series of questions to derive a specific code number cannot be formed 

for this digit. The only question which can be structured for this 

digit is whether machining of gear teeth is involved. Based on the 

answer to the question, the following list of geometrical 

characteristics can be presented to the users [47]: 

If the answer is "yes": 

0: No auxiliary hole(s). 

1; Axial hole(s) not related by a drilling pattern. 

2; Axial hole(s) related by a drilling pattern. 

3: Radial hole(s) not related by a drilling pattern. 

4: Holes axial and/or radial and/or in other directions, 
not related. 

5: Holes axial, and/or radial and/in other directions 
related by drilling pattern. 
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If the answer is "no"; 

6; Spur gear teeth. 

7: Bevel gear teeth. . 

8: Other gear teeth. 

9: Others. 

For the part shown in Figure 33, no machining of gear teeth is 

involved. One axial hole which requires a drilling pattern is present. 

Thus, the code number of the fifth digit for the part can be selected 

as "2". The geometrical code of the part shown in Figure 33 can be 

"01212". 

5. An example using a non-rotational part 

The coding procedure is again illustrated with a non-rotational 

part. The part drawing for the example part is shown in Figure 38. 

The non-rotational part is defined as a rectangular prism in the Opitz 

system [47]. 

The non-rotational part is further classified into three different 

components. These include a flat part, a long part, and a cubic part 

based on dimensional ratios. The lengths of three edges are required 

to determine the dimensional ratio. These lengths are denoted by A, B, 

and C such that A > B > C. The dimensional ratios required for each 

component class are shown in Table 7. 

For the part shown in Figure 38, the lengths of three edges are 

determined to be as A=425 mm, B=250 mm, and C=80 mm. Two dimensional 

ratios are A/B=1.7 and A/C=5.3125. The first dimensional ratio A/B is 
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FIGURE 38. Example of the non-rotational part 
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TABLE 7. The dimensional ratio required for each component class for 
the non-rotational part 

Component Code number Dimensional ratio 

Flat 6 A/B < 3, A/C > 4 

Long 7 A/B > 3 

Cubic 8 A/B ̂  3, A/C < 4 

less than 3. The second dimensional ratio is greater than 4. Thus, 

the part is classified as a flat component. The corresponding code 

number is "6". 

The geometrical code of the following digits for flat part are 

shown in Figure 39. As shown in Figure 39, a unique series of 

questions to derive specific code number for the following digits 

cannot be formed. Thus, the lists of geometrical features of each code 

number (a menu) can be presented to users. 

The second digit considers a part's overall shape. The 

hierarchical tree structure for this digit cannot be formed. Two basic 

shapes are included which include a plane shape and a flat shape [47]. 

Based on these two basic shapes, the geometrical features of each code 

number can be presented to users as a menu. The geometrical features 

of each code number are shown in Figure 39. For the part shown in 

Figure 38, the overall shape is flat and rectangular with small 

deviations. Thus, the code number "5" is selected as the second digit. 



www.manaraa.com

GEOMETRICAL CODE 

lit Digit 2ntl Oigil 

Componnni 

Class 

OvnrAll 

ShopH 

0 Rcclnnotilar 

1 
nv(;l.*ng(jtar. wtHi f,nn 
Uttvi«>iion (Hi'iht Anqle 

IK Trian()ulnr) 

2 

3 
P

la
n

e
 

RActangulnr. with 

anrjiilar dwvi.iiiuns 

i1rri,iit(|iii.ii with 

circiilnr dcwi.iiion 

4 
Any flat shmpm 

othnr thmn 0 lo 3 

5 
fl<i| lis rnrt.toqdiir 
or  fMihl  sn i . ' i l l  
d* tv i  « l i f 'Ms  ( I I I»  i r t  '  

VVn|< | l t t l |  l l t l l lM'MI  

6 
Fiat Components 

F 3- 2 « 6 
FlAt Components, round 

or ot nny slinpe other 
thmm pn^itmn 5 

7 
Flwt Coinponiwits 

fnqiil.irly nrcho'l tii 
'lixhcU 

8 
f Mt Comport/mM 

irrngulArlv archnri or 
Ui&hnii 

9 Othnin 

3rd Oigll 4th Digit 5th Digit 

Principal bore, 

rotational surfiice 

machining 

Plane Surface 

Machining 

Auxiliary hole(s) 

Forming. Gear Teeth 

0 
No rotational 
nmchininr) or 

hore(s) 
0 

No Surface 

Machining 0 
No auxiliary holes. 

gi:arti*uth 
and forminci 

1 
One princip»! liore. 

smooth 1 
Functional Chamfers 

(e.g. welding prep.J 
1 
1 

Holes drilled in oni; 

direction only 

2 
Onm principal hore 

sleppftd to ono or both 
emis 

2 One plana surface 2 

1 

Holes drilled in more 

than one direction 

3 
Ono principal boni 

with siitipci etnmonts 
3 Stepped plana 

surfaces 
3 1 

è 
5 

Holes ilr>ll('d 
in «ne 

direction only 

4 
Two prMictpni bores, 

parallel 4 
Stepped plane surfaces 
at rirfhi an^fos. inclined 

and/or opposite 
4 Z 

V 
5 
% 1 

Holes drilled 
in more than 
one direction 

5 
Scvftrnl iirincipal 

bores, parall'.'t 
5 Groove and/or Slot 5 

0 1 

Formed, 
no auxiliary 

holes 

6 
Sevofitf pnncipn) bntos. 

uthiir than parmllnl 6 
Groove and/or Sfot 

and 4 
6 

Ê 
0 5 

O 

Formnd. 
with auxiliary 

holos 

7 
Mnrrhinni «-.nnuLir 
niir{;ii:i>s. annular 

ijtoovns 
7 Curved Surface 7 

Gn^r tooth. n«, 

auxiliary holi^K) 

8 7 » i«rini:ipal hniojs) 8 Gtiidn Surfaces 8 
Geai teeth, «viih 

auxiliary hotnlsj 

9 Oltwir» 9 Othfirs 9 Oih'MS 

FIGURE 39. Geometrical codes of the flat component class 
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The third digit considers whether the part has a principal bore 

and a rotational surface machining. It is not possible to form a 

unique series of questions which leads to a specific code number for 

this digit. The geometrical features of each code number of the digit 

are presented to users as a menu. These features are shown in Figure 

39. For the part shown in Figure 38, two parallel principal bores are 

shown. Thus, the code number "4" is selected as the third digit. 

The fourth digit considers plane surface machining. The 

geometrical features of each code number are presented to users as a 

menu for this digit. For the part shown in Figure 38, a plane surface 

machining at right angle is present. The code number "4" is selected 

as the fourth digit. 

The fifth digit considers whether an auxiliary hole(s), and gear 

teeth, with or without forming are present. The geometrical features 

shown in Figure 39 were presented to users as a menu. For the part 

shown in Figure 38, holes which are related by drilling pattern in one 

direction are present in the drawing. The code number "3" is selected 

as the fifth digit. The Opitz codes for the example part are thus 

"65443". 

The software that evolved from this research was developed such 

that users can either respond to a series of questions or selecting 

geometrical features from given menu to derive geometrical codes of a 

part. By using the software, the parts collected for this research 

were coded. The code numbers for all parts analyzed are presented in 

Appendix B. 

V 
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6. Data requirements for clustering algorithms 

In order to use two clustering algorithms to define families based 

on geometrical characteristics of parts, the part-characteristic matrix 

must be formed. This matrix represents the geometrical characteristics 

which each part possesses. The columns of this matrix represent 

geometrical characteristics. The rows of this matrix represent the 

parts. The matrix was formed based on the geometrical codes of the 

Opitz system. 

The formation of this matrix is illustrated with a new set of 

example parts shown in Table 8. Table 8 contains the part name, the 

part number, and the Opitz code numbers. In order to form the part-

characteristic matrix, the geometrical characteristics that all the 

parts possess are determined first. These geometrical characteristics 

obtained for the example parts are shown in Table 9. The geometrical 

characteristics are used to form the incidence matrix. The part-

characteristic incidence matrix (denoted by PCMAT^^j) was formed based 

on the following; 

1 if a part i has geometrical characteristic j 
PCMAT^j = { 

0 otherwise 

The part-characteristic incidence matrix obtained for the example 

parts is shown in Figure 40. Two clustering algorithms were applied to 

this matrix to define part families based on the geometrical 

characteristics of a part. This defines the two coding and 

classification methods; OPITZ/ROCA and OPITZ/CASC. 
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TABLE 8. The geometrical codes of selected parts 

Part Part Opitz 
name number codes 

Bus bar 370452703 6 0 0 5 3 
HD. Copper 126460138 6 0 1 0 3 

Stud 370401009 2 2 0 0 0 
Contact 687004001 2 4 0 0 0 

Rod 687006001 2 4 0 0 0 

TABLE 9. The geometrical characteristics obtained for the example 
parts 

Digit Characteristics description 

Digit 1 x^ - rotational parts w/o deviations ( 0.5 < L/D < 3 ) 
X2 - flat parts ( A/B < 3, A/C ^ 4 ) 

Digit 2 X3 - cylindrical with no shape elements 
X4 - stepped cylindrical with no shape elements 
Xg - rectangular 

Digit 3 Xg - without through bore 
X7 - no rotational machining 
Xg - one principal bore 

Digit 4 Xg- no surface machining 
Xio - groove and/or slot 

Digits Xii - holes drilled in one direction related by 
drilling pattern 

X12 - no auxiliary hole(s) and gear teeth 
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characteristic 
Part 

1 2 3 4 5 6 7 8 9  1 0  1 1  1 2  
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Stud 
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Rod 
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0 
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1 
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0 
0 
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0 
0 
1 
1 
1 

1 
0 
0 
0 
0 

0 
1 
0 
0 
0 

0 
1 
1 
1 
1 

1 
0 
0 
0 
0 

1 
0 
1 
1 
1 

FIGURE 40. The part-characteristic incidence matrix obtained for the 
example parts 
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D. Implementation of the ROCA Clustering Algorithm 

1. Overview 

The rank order clustering algorithm (ROCA), developed by King 

[30], was implemented in this procedure to define families of parts. 

The part-machine matrix from the PFA analysis and the part-

characteristic matrix from the Opitz system are used as input matrices 

for the ROCA algorithm. The ranking algorithm is programmed according 

to the steps which will be described in the following section. The 

incidence matrix which is formed from the PFA coding method example is 

used to illustrate this clustering algorithm. This matrix represents 

the part and the machine requirements in the process routings. The 

matrix is shown in Figure 41. 

Machine 12 3 4 5 
Part 

AA 
BB 
CC 
DD 
EE 
FF 
GG 

0  1 1 0  1  
10 0 10 
0  1 1 0  0  
10 0 10 
1 0 0 0 0 
10 0 10 
0  0  1 0  1  

FIGURE 41. The part-machine incidence matrix obtained for the data 
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The following variables are used in implementation of the ROCA: 

tnp: Total number of parts 
id: Total number of machines 
col: Index of machine of a part-machine matrix 
row: Index of part of a part-machine matrix 
mach(i): list of machines 
pmmat(i/j): Incidence matrix 
atp(i): Total number of machines used for part i 
route(i,j): Process sequence for part i and machine j 
y: Row number with entry 
z: Row number with no entry 

2. Clustering procedure 

The rows of the part-machine matrix are used to represent parts 

collected for this study. The columns indicate machines used to 

manufacture the parts. The ranking processes consist of sorting 

procedures of rows and columns. The basic steps involved in both row 

and column reordering procedures are the same. The steps of row 

reordering procedure are as follows: 

Step 1: Start sorting procedure with last column 

Step 2: Make two lists for this column 
List 1: row numbers which have an entry 
List 2: row numbers which have no entry 

Step 3: Combine two lists by putting the list 1 ahead 
of the list 2 

Step 4: Determine whether the ranking procedure is done 
for all columns. 
If no, decrement current column number by 1 
If yes, goto step 5 

Step 5: Rearrange the part-machine matrix according to 
the new ranking. 

The flow chart for the reordering procedure is shown in Figure 42. 
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Move the current 
row number to the i 
head of list 2 

no 

yes 

no 

yes 

no 

yes 

col mn reordering 
subroutine 

// the 
current colui 

number/^ 

row 
^number 1/ 

row 

Combine list 1 
and list 2 

decrement 
row number 

set current row 
to last row 

set current column 
to last column 

decrement 
column number 

Move the current row number 
to the head of list 1 

Rearrange the rows 
according to the 
combined list 

FIGURE 42. Flow chart for sorting procedure 
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The reordering procedure for columns is exactly the same as one 

for rows. Thus, the following ROCA algorithm can be described by the 

following sequence of code: 

ROCA Algorithm: 

REPEAT 
FROM the last column TO the first column 
DO (*row reordering*) 

locate the rows ("machines*) with entries; 
move the rows with entries to the head of the 
row list, maintaining the previous order of the 
entries 

END DO; (*row reordering*) 
FROM the last row TO the first row 
DO (*column reordering*) 

locate the columns (*part*) with entries; 
move the columns with entries to the head of the 
column list, maintaining the previous order of 
the entries 

END DO (*column reordering*) 
UNTIL (no change AND inspection required) 

The algorithm can be illustrated with the matrix presented in 

Figure 41. The stages involved in row ordering of the matrix are shown 

in Figure 43(a). The first line shows the initial row list. For the 

last column (5) the underlined entries 1 and 7 are the machines for 

this column. They are moved in this order to the front of the list, as 

indicated in line 2 of Figure 43(a). For the next column of the matrix 

(column 4), the machines entries are 2, 4, and 6. They are underlined 

in line 2 of Figure 43(a). These entries are moved to the front of the 

list to form line 3 of Figure 43(a). This process is repeated for the 

remaining columns of the matrix. The matrix is rearranged according to 

the ranks determined by this row reordering operation. The matrix is 

shown in right hand side of Figure 43(a). 
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Row list 

Column no. 5 12 3 4 5 6 7 

4 1 7 _2. 3 _4_ 5 _6_ 

3 2 4 6 _1_ _7_ _3_ 5 

2  _ 1 _ 7 _ 3 _ 2 4 6 5  

1 1 3 7 JLJLJL.JL 

2 4 6 5 1 3 7 

Parts 

2 
4 
6 
5 
1 
3 
7 

Machines 

1 2 3 4 5 

Ï 0 0 1 o" 
10 0 10 
10 0 10 
1 0 0 0 0 
0  1 1 0  0  
0  1 1 0  0  
0  0  1 0  1  

(a) Stages involved in the row reordering 
and the result matrix 

Column list 

Row no. 7 1 2 4 _5_ 

6 3_ 5 1 _2_ 4 

5 i. 1. 5 1 4 

4 3 2 5 _L 4 

3 i. 3 2 5 £ 

2 1_ i. 3 2 5 

1 _1_ _4_ 3 2 5 

1 4 3 2 5 

Parts 

2 
4 
6 
5 
1 
3 
7 

Machines 

1 4 2 3 5 

1 1 0  0  0  
1 1 0  0  0  
1 1 0  0  0  
1 0 0 0 0 
0  0  1 1 1  
0  0  1 1 0  
0 0 10 1. 

(b) Stages involved in the column reordering 
and the result matrix. 

FIGURE 43. The results obtained from the ROCA 
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Column reordering is carried out in a similar way but starting 

with the current column order 1,2,3,4,5, and the current row order 

2,4,6,5,1,3,7. The stages involved are shown as the successive 

underlined entries of Figure 43(b). The new column order is determined 

to be 1,4,2,3,5. The result matrix is also shown in the right hand 

side of the Figure 43(b). In this example, the algorithm stops after 

column reordering operation because no "exceptional" elements exist in 

this example. Two part families are formed in this example as 

presented in Figure 43(b). The first family includes parts 2, 4, 6, 

and 5. The second family includes parts 1, 3, and 7. 

Output obtained by executing ROCA software developed in this 

research is shown in Figure 44. The initial matrix shown in the figure 

was the input data for the ROCA algorithm. The algorithm stopped after 

first iteration because no further row or column exchanges occurred. 

The final matrix after first iteration was investigated whether 

exceptional parts or machines were existed. The exceptional parts are 

those parts which require some of their operations to be performed on 

the machines belonging to other groups. The exceptional machines are 

those machines which are required by a relatively large number of parts 

[29]. There are no such elements with the example. Thus, two part 

families; (2,4,6,5) and (1,3,7) are defined. 

The algorithm is applied to both the PFA and the Opitz coding 

methods. After each run, the final matrix is inspected to determine 

whether exceptional elements exist. If so, such elements are 
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Result of ROCA 

***** The initial Part-Machine ***** 

Iteration 0 

part/ mac h ABCDE 

1 01 01101 
02 10010 

3 03 01100 
4 04 10010 

5 05 10000 
6 06 10010 
7 07 00101 

***** The matrix after row reordering **** 

Iteration 1 

part/ mac h ABCDE 

10010 
10010 
10010 
10000 
01101 
01100 
00101 

FIGURE 44. The actual output of ROCA algorithm obtained for the 
example parts 

2 02 
4 04 
6 06 
5 05 
1 01 
3 03 
7 07 
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***** The incidence matrix after column reordering ***** 

Iteration 1 

part/ mach ADCBE 

1 02 11000 
04 11000 

3 06 11000 
4 05 10000 

01 00111 
6 03 00110 
7 07 00101 

***** The matrix after row reordering **** 

Iteration 2 

part/ mac h ADCBE 

1 02 11000 
2 04 11000 
3 06 • 11000 
4 • 05 10000 
5 01 00111 
6 03 00110 
7 07 00101 

***** Number of machine usage ***** 

Number Machine No. Machine id. num. of usage 
1 1 A 4 
2 4 D 3 
3 3 C 3 
4 2 B 2 
5 5 E 2 

FIGURE 44. (Continued) 

V. 
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eliminated from the analysis, and the matrix is rearranged because 

those elements may limit the formation of block-diagonalized matrix. 

The ROCA algorithm is again applied until there is no change of rows 

and columns. Thus, the main program of the ROCA algorithm can be 

summarized by the following procedure; 

IF (start afresh) 
THEN read data from file 
ELSE add more data 

END IF: 
REPEAT (*the whole loop*) 

IF (information about machines and components required) 
THEN print as much as requested 

END IF: 
REPEAT (*interactive*) 
CASE 

1: Selecte part of current matrix for detailed 
inspection. 

2: specify exceptional elements 
3: return exceptional elements to normal status 
4: specify or remove bottleneck status of particular 

machines 
5: increase the number of machines of specified type 
6: merge machines of the same type 

END CASE: 
UNTIL (no further action required); 
(*end of interaction*) 
implement ROCA: 
print current matrix and other data as requested 

UNTIL (block diagonal form OR time off to consider next move); 
(*end of the whole loop*) 

E. Implementation of CASC Clustering Algorithm 

1. Overview 

Minimum spanning trees (MST) and single linkage cluster analysis 

(SLCA) are used to implement the CASC algorithm. The SLCA uses 

similarity coefficients between pairs of parts. Pairs are formed by 
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selecting another parts which has the largest degree similarity. In 

order to apply SLCA in this research, the the similarity coefficient 

matrix whose dimension is 233x233 is calculated and saved in computer 

memory. By constructing of MST's of the similarity matrix, there is n 

need to save such a large matrix in memory. This is because all the 

information required for the SLCA of a set of points is contained in 

their MST [19]. Many algorithms for finding the MST are known. Prim' 

algorithm was adopted in constructing the MST because it is an 

efficient algorithm in terms of both computation time and memory 

requirements [19]. 

The following variables are defined to implement the CASC 

clustering algorithm: 

n: The number of points = the order of similarity 
coefficient matrix. 

dlarge; The arbitrary value less than the minimum of 
of the similarity coefficient matrix. 

D : The lower triangular similarity matrix with 
bound [l:nx(n-l)/2]. 

A(i) ; If i is already assigned to the tree (initially 
consisting of no. 1 only), or 0 otherwise. 

B(i) : The index of a part to which i is jointed. 
C(i) : Similarity coefficient between i and B(i). 
ifault: Set to 1 if n less than 2, 0 otherwise. 
delta : The amount by wjiich the clustering threshold 

is raised at each iteration. 

2. The data array 

Figure 45 shows an example of raw data array which could be used 

in the CASC cluster analysis. From the Figure 45 it can be seen that 

each row of the array consists of description of a single part or 
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processing machine in terms of presence or absence of a machining 

operation. For the program, the convention 1 = 'operation required' 

and 0 = 'operation not required' was adopted. 

machines 

1 2 3 4 5 

AA 0  1 1 0  1  
BB 10 0 10 
CC 0  1 1 0  0  
DD 10 0 10 
EE 1 0 0 0 0 
FF 10 0 10 
GG 0 0 10 1 

FIGURE 45. Example of an incidence matrix 

3. Construction of the similarity coefficient matrix 

The SLCA algorithm was performed based on the similarity 

coefficient matrix. Three variables, denoted by A, B and C, are used 

to calculate the similarity coefficient between part i and part j. The 

variable A contains the number of elements which both parts have as 

attributes. The variable B contains the number of elements for which 

part i has an attribute, but part j has not. The variable C contains 

the number of elements for which part j has an attribute, but part i 

has not. For the example shown in Figure 45, both part AA and part CC 

require two machines 2 and 3. Part AA requires machine 5, but part CC 

does not. Thus, A, B, and C are 2, 1, and 0 respectively for part AA 
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and part CC. The similarity coefficient between the part AA and the 

part CC is then calculated as A/(A+B+C) which is 2/3 [16]. 

By repeating the above procedure, the similarity coefficients were 

calculated for every two parts collected for this research. The 

similarity coefficient matrix obtained for the example represented by 

the part-machine incidence matrix, shown in Figure 45, is shown in 

Figure 46. The entries in the matrix show the similarity coefficients 

between two parts. The entries in upper triangular portion of the 

matrix are the same as those in lower part which is shown. Based on 

this matrix, the minimal spanning tree of the matrix can be 

constructed. The construction of the MST is explained in the following 

section. 

Part 

Part 

AA BB CC DD EE FF GG 

AA 0 
BB 0 0 
CC 2/3 0 0 
DD 0 1 0 0 
EE 0 1/2 0 1/2 0 
FF 0 1 0 1 1/2 0 
GG 1/2 0 1/3 0 0 0 0 

FIGURE 46. The similarity coefficient matrix obtained for the example 
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4. Construction of the MST 

The SLCA algorithm starts with constructing the minimal spanning 

(MST) tree of the similarity coefficient matrix. The Prim's algorithm 

is used to find the MST because it is faster and requires each 

similarity coefficient between two parts only once. The similarity 

coefficient matrix therefore need not be stored in the memory. 

The flow chart for constructing the MST is shown in Figure 47. 

The following variables were used to construct the MST of similarity 

coefficient matrix: 

rowl: indicates the part i of part-machine matrix 
row2: indicates the part j of part-machine matrix 
A; number of machines visited by both parts i and j 
B; number of machines visited by part i but not by part j 
C: number of machines visited by part j but not by part i 
dist: used to store the similarity coefficient between part i 

and part j 
min: indicate the current largest similarity coefficient of 

part j 
nex: indicate next candidate part j 

The other variables were defined in the beginning of this chapter. In 

order to compute the MST, three lists are formed. They are described 

below: 

List 1: An indicator which is 1 if P belongs to group A, 
and 0 otherwise. 

List 2: For members of group A, the reference number of the 
point to which P was linked when it joined group A. 
For members of group B, the reference number of the 
point in group A nearest to P 

List 3: For all points the distance between P and the 
point referred to in list 2. 
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dist = A/(A+B+C) 

C(k) = dist 
dist >= C(k) 

B(k) = j 

min = C(k) 
rain <= C(k) 

nex = k 

k > tnp k=k+l 

i > tnp i=i+l 

f go to 
clusterim 
i steps 

Initialize A(i) 

min = dlarge 

A(k) = 0 

rowl = k 
row2 = j 

rowl = j 
row2 = k 

Calculate 

FIGURE 47. Flow chart for constructing the MST 
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Initially point 1 is assigned to group A. Let Q be the latest 

addition to A. Then the distance PQ is calculated for each member of 

B. If it is less than the value recorded in list 3, Q and the new 

distance are substituted for the values in lists 2 and 3. 

Simultaneously the minimum value of the distances recorded in list 3 

for members of B is found, and the next point Q is determined. The new 

point Q is then assigned to A. The process terminates when all points 

belong to group A. The minimal spanning tree obtained from the example 

is shown in Table 10. 

TABLE 10. The minimal spanning tree obtained from the example 

From To Distance 
part part (similarity coefficient) 

BB DD 1 
CC AA 2/3 
DD FF 1 
EE BB 1/2 
FF CC 0 
GG AA 2/3 

5. Single linkage cluster analysis 

Single Linkage Cluster Analysis was developed by Sneath and Sokal 

[65]. The distance threshold 6 is given as data. The maximum 

similarity coefficient d^ax is computed because the sorting begins at 

LQ; the largest multiple of Ô which is less than d^^^. A list H is 

formed of all links whose lengths lie between L and L+5. 
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A list G containing the group members is then formed, marking the 

final member of each group with an indicator. The list G consists 

initially of all points as single groups. 

At the beginning of the procedure, the minimal spanning tree is 

created from the similarity coefficient matrix. The next procedure 

consists of a sorting scheme that determines clusters at a series of 

decreasing distance thresholds (d^yd^, ....). 

The clusters at level d^ are constructed according to the 

following steps: 

Find maximum similarity coefficient 

Set all the points as single groups 

Set starting cluster level to integral multiple 
of Ô which is greater than djj,^j^, the 
shortest link of the minimum similarity coefficient 

For each link in array C that is greater than the 
level, amalgamate two clusters 

Decrease all links of jointed points to zero to 
prevent re-use 

All the points are clustered in a single group? 
If no. Go to Step 7 
If yes, Stop 

Decrease the cluster level by 5 and go to 
Step 4 

The SLCA algorithm is illustrated with the minimal spanning tree 

shown in Table 10. The distance threshold 6 is set to 0.01 for the 

example. The maximum similarity coefficient can be found easily 

in the Table 10 which is 1.00. The clustering starts at the level 

1.00. At this level, all parts are in separate group. At the level of 

Step 1: 

Step 2; 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Step 7 : 

V. 
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similarity coefficient 0.99, parts (2,4,6) are in one family because 

their coefficients are greater than 0.99. At the level 0.66, (1,3,7) 

is another family because their coefficients are greater than 0.66. 

The number of families and their part members are shown in Table 11 at 

different similarity coefficient levels. Two part families with same 

members which are also obtained by ROCA algorithm are formed at 

similarity coefficient 0.49. The two families are parts (1,3,7) and 

(2,4,6,5). 

TABLE 11. The result of SLCA for the example 

Similarity Number of Part 
coefficient family numbers 

1.00 7 (1) (2) (3) (4) (5) (6) (7) 
0.99 5 (1) (2,4,6) (3) (5) (7) 
0.66 3 (1,3,7) (2,4,6) (5) 
0.49 2 (1,3,7) (2,4,6,5) 
0.00 1 (1,3,7,2,4,6,5) 

The actual output for the example is also shown in Figure 48. The 

last member of each family is indicated by * in the actual output. 

Prim's tree structure of similarity coefficients and the results of the 

SLCA are shown in the figure. The results obtained correspond with 

those shown in Tables 10 and 11. 
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Results of CASA 

Primes Tree Structure 

02 2 4 
03 3 1 
04 4 6 
05 5 2 
06 6 3 
07 7 1 

.6666667 

Result of Single Linkage Cluster Analysis 

level = 1.01 

number of clusters = 7 

1 * 
2 # 
3 * 
4 * 
5 * 
6 * 

7 * 

FIGURE 48. Thé actual output of CASC algorithm obtained for the 
example parts 
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l e v e l  =  . 9 9  

number of clusters = 5 

1 * 
2 4 6 * 
3 * 
5 * 
7 * 

level = .6600003 

number of clusters = 3 

1 3  7 *  
2 4 6 * 
5 * 

level = .4900005 

number of clusters = 2 

1 3 7 * 
2 4 6 5 * 

level = -9.999329E-03 

number of clusters = 1 

1 3 7 2 4 6 5 * 

FIGURE 48. (Continued) 
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VII. RESULTS OF ANALYSIS 

A. Introduction 

Many industrial robots used in industry today are inefficient 

because they lack the ability to handle different part geometries. One 

goal of this research has been to design X-change robotic gripper sets 

to handle different part geometries. The part families were formed by 

using group technology techniques to utilize the geometrical 

similarities of parts within families in the design of the gripper 

sets. Actual manufacturing data including part drawings and process 

routings were collected from four manufacturing organizations. 

Altogether, 233 parts were involved in the analysis. In part 

coding, it was necessary to analyze all drawings and route sheets for 

the parts to be coded. This is because the codes were formed from the 

parts' geometrical characteristics and process routes. Computerized 

coding and classification systems were applied on the combined data 

base to define part families for the design of robotic gripper sets. 

In this chapter, the part families and their characteristics from each 

coding and classification system used are identified and discussed. 

B. Formation of Part Families 

1. Overview 

The data from four manufacturing organizations were combined into 

one database in Chapter V. This database was used to form part 
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families by using the computer software developed and described in the 

preceding chapter. Individual sets of part families were obtained for 

the four different coding and classification methods. 

Two coding methods and two classification algorithms, discussed in 

Chapter III, were applied to define part families. Thus, four coding 

and classification methods; PFA/CASC, PFA/ROCA, Opitz/CASC and 

Opitz/ROCA were applied. The families and their component parts for 

each method are identified and discussed in the following section. 

2. Part families of the PFA/CASC method 

This method uses process sequences of parts as a basis for coding 

and similarity coefficients between parts for classification. The only 

data used were the number of machines and the parts which visited each 

machine, in effect, the part-machine matrix. This means that neither 

the process sequence nor the loading on each machine were taken into 

account. The sequence in which the parts visited the machines did not 

affect the definition of part families. 

The clustering procedure was performed iteratively as the 

clustering level was lowered. The similarity coefficient calculated 

based on the process routings was used to represent the clustering 

level. The clustering procedure started at the similarity coefficient 

1.00 in this method. Families were combined to form a new family as 

the level of clustering was lowered. The level of similarity 

coefficient was lowered by increments 0.01. The amalgamation of 

families took place when the similarity coefficients of the families 
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were greater than a certain clustering level. The clustering process 

was continued until the level of similarity coefficient reached to 

0 .00 .  

The number of part families depends on the clustering level 

represented by similarity coefficient in this method. The number of 

families formed at various levels of similarity coefficients are shown 

in Table 12. As can be seen in Table 12, one family is formed at the 

similarity coefficient level 0.00 where the clustering algorithm stops. 

It can also be seen that 233 families were formed at the similarity 

coefficient level of 1.00. 

TABLE 12. Number of families at each level of similarity coefficient 

Level of similarity Number of 
coefficient families 

1.00 233 
0.99 150 
0.87 149 
0.85 147 
0.83 138 
0.79 123 
0.74 91 
0.71 87 
0.66 46 
0.59 36 
0.57 33 
0.49 6 
0.42 5 
0.39 3 
0.33 2 
0.00 1 
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Five major part families out of a total of 91 were formed at the 

similarity coefficient 0.74. The level was selected because the 91 

families at this level was approximately midway between two extremes 

233 and 1. At this level of coefficient many families had one part 

member. Only families which had ten or more parts as members were 

selected. Five major part families were obtained as a result. The 

part families and their members formed with the PFA/CASC coding and 

classification method are shown in Table 13. These families were 

defined at the similarity coefficient 0.74. 

3. Part families of the PFA/ROCA method 

This method is a coding and classification system in which process 

routes are used as a basis for a ranking process for rows and columns 

in a part-machine matrix. The objective of the ROCA algorithm is to 

generate diagonal groupings of the part-machine matrix entries. If tha 

part-machine matrix can be divided into such diagonalized groups, the 

ROCA algorithm will generate the families of parts and groups of 

corresponding machines. 

With the data collected for this research, it was not possible to 

divide the matrix into mutually exclusive families of parts and groups 

of machines. This was because of two cases discussed by King [29] 

which occurred with the data. The first case corresponded to some 

parts which required some of their operations to be performed on the 

machines belonging to other identifiable groups. The second case 

corresponded to "bottleneck" machines which were required by a 

relatively large number of parts in the data base. 
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TABLE 13. Part families formed by PFA/CASC method (Similarity 
coefficient = 0.74) 

Members (part number) 
Family 

0W019819012 2J496219012 1J1277000B2 2E4085000A2 
1 2L373522012 3N698122012 2E542919042 2L416322012 

(17 members) 3C780819042 3N698322012 2L342619012 2L339519012 
4E397919012 1R125624092 1R124835072 2F143224092 
2R124724092 

2 6870008005 6870008006 6870092001 6870093001 
(10 members) 6870239001 7578887003 7578887004 7578887010 

7578887009 7578889004 

3 6870112001 6874139001 7576591001 7610167002 
(10 members) 7576896001 7578887005 7578887006 7578887007 

7610014003 7574570001 

7J1025 4J4571 5J9110 5J0766 
5J1553 4J1091 4J2696 4J3291 
5J8793 8J5875 8J1917 3G0650 
9J3441 2J8069 4J6485 4T1014 
1U4010 9J4077 9T4097 9J4941 

4 5J8774 4T9165 3J7807 8J8660 
(46 members) 3S7445 9J1234 9J4847 9M5550 

7J8308 4T9151 4T0958 6J0433 
6J0434 8J0130 8J0444 6J9992 
8J1701 3T2321 7J5928 8J9257 
8J0084 5J8773 3G2842 7J3897 
8J8661 9J3453 

3J0601 5J1340 1U0488 3G2840 
5 3G2841 4T4632 6P5391 7J8056 

(20 members) 8J8573 8J2308 9J0752 5J0899 
9T1495 1U2083 7J2266 9J2382 
9T2887 9J3382 8J3554 8J3665 
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To overcome the problem, two relaxation methods suggested by King 

[29] were adopted. If "case #1" parts existed after each application 

of the clustering algorithm, the part's operations to be performed on 

the other groups of machines were ignored. If the bottleneck machines 

were found (case #2), the matrix was revised by decomposition that 

provided duplication of these machines to the extent each component 

operation was performed by one such machine. 

A series of relaxation procedures was performed interactively 

until diagonal groupings of the parts-machines were obtained. The ROCA 

algorithm was applied on the revised matrix after each relaxation 

procedure. An investigation of the initial matrix showed that machines 

existed which were used less than 10 times to perform necessary 

operations. Those machines were excluded to permit the ROCA algorithm 

to produce a diagonalized block matrix. 

Nine machines were excluded, and the initial matrix was revised. 

The ROCA algorithm was performed sequentially after revising the matrix 

with each relaxation method. The families which had ten or more part 

members were selected. Seven major part families were obtained in this 

method. The families and their component parts are shown in Table 14. 

4. Coding parts with the Opitz system 

The computer software for the Opitz system discussed in Chapter VI 

was used to code geometrical characteristics of parts. The Opitz codes 

for all the parts collected for this research are presented in Table 30 

in Appendix B. The manual for the Opitz system [47] was also used 
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TABLE 14. Part families formed by PFA/ROCA method 

Family-
Members (Part number) 

(31 members) 

3N698122012 
2E4085000A2 
1E3943000A2 
2N698722012 
1R124835072 
11A5214X022 
3P786933092 
7575875001 

2E542919042 
2L373522012 
2L339519012 
0WO19819O12 
11A5216X012 
1K586935162 
3V708322012 
7619594002 

2L416322012 
1J1277000B2 
2L342619012 
2J496219012 
2F1428000A2 
1R250935162 
6874216002 
7575872002 

3C780819042 
3N698322012 
4E397919012 
3E5210000A2 
10A7182X012 
4J3291 
7610504001 

(45 members) 

11A5324X012 11A5326X012 2F143224092 2R124724092 
3R124624092 5J1553 8J1917 7J1025 
4J4571 5J9110 5J8793 4J1091 
3J2973 5J2438 7J7674 3J1970 
2J5143 8J8829 4J2696 7J5928 
8J9257 5J0766 8J5875 2J8069 
4J6485 3J7807 8J8660 5J8773 
3G2842 7J3897 8J8661 9J3453 
6J0433 6J0434 8J0130 8J0444 
6J9992 8J1701 3T2321 1E501208012 
28A2514X012 38A2508X012 38A2511X012 8J2045 
1U2764 

6870003001 15A6470X012 6870174001 28A2519X012 
6870008004 15A6503X012 2R2617X0012 7575863006 

3 1U222646172 4T1889 6870092001 6870008005 
(22 members) 6870008006 6870093001 6870239001 7578887003 

7578887004 7578887009 7578887010 7578889004 
6870005001 7610493001 

4 
(32 members) 

6870181001 
6870167003 
6870007001 
7578887001 
7610167002 
6870060001 
6870148002 
6870110001 

6870020002 
6870021002 
7576896001 
6870364001 
7574570001 
6870341001 
6874139001 
6870407001 

6870027002 
7575872001 
7578889002 
7578889001 
7575955002 
6870444001 
6874008002 
6874098001 

6870026002 
6870112001 
7578887002 
7576591001 
7578614001 
7578677001 
6870043001 
6870127001 

9J1234 9J4847 
5 1U4010 9J4077 

(31 members) 5J8774 4T9165 
5J1340 1U0488 
4T4632 6P5391 

9M5550 4T1014 
9J4097 9J4941 
2R331019022 3J0601 
3G2840 3G2841 
7J8056 8J8573 
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TABLE 14. (Continued) 

Family 
Members (Part number) 

8J2308 9J0752 5J0899 9T1495 
5 1U2083 7J2266 9J2382 9T2887 

9J3382 8J3554 8J3665 

whenever references about the conditions of classification were 

required. 

There are 10^ geometrical features in the Opitz system. It is 

impossible to include all the geometrical features in the cluster 

analyses because of computer memory limitations. Thus, major 

geometrical features were selected to perform the cluster analyses. 

The frequencies of each code number are shown in Table 15. The entries 

in this table show the frequencies of code numbers used in all the 

parts collected for this research. A total of 63.1 % of all parts were 

a rotational component with or without deviation. 

The parts were first classified into three major classes to select 

the geometrical features. The major classes are based on the overall 

shape. The first class is rotational parts without deviation. The 

second class is rotational parts with deviation. The third class is 

non-rotational parts. 

There are other geometrical features of a part which affect the 

design of a robotic gripper. The major three classes were further 

refined to determine the geometrical features other than the overall 
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TABLE 15. Frequencies of code number used in part data 

Major 1 Code 
class number Digit 1 Digit 2 Digit 3 Digit 4 Digit 5 

0 31 28 31 38 44 
1 31 22 24 11 15 
2 22 2 18 21 2 

Rotational 3 2 1 4 0 
parts 4 9 0 0 6 
without 5 5 0 0 3 
deviation 6 4 0 0 3 

7 2 0 0 0 
8 0 0 0 1 
9 0 0 0 0 

0 1 1 12 11 
1 16 0 2 32 
2 26 2 22 15 

Rotational 3 40 9 8 22 1 
parts 4 30 0 57 2 7 
with 5 12 1 10 0 
deviation 6 0 1 0 1 

7 1 • 0 0 2 
8 5 0 0 1 
9 0 0 0 0 

0 25 41 32 27 
1 22 10 1 31 
2 7 12 7 9 

Non- 3 21 0 16 2 
Rotational 4 3 6 1 1 
parts 5 3 7 30 10 

6 41 0 12 1 10 
7 15 0 2 2 0 
8 34 1 0 0 0 
9 8 0 0 0 

shape. Those features included the contour of component's external 

shape, internal shape, component's surface condition etc. Thus, the 

component classes were determined by not only the part's overall shape, 

but also those features which affect the design of robotic grippers. 
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After all the parts were coded, the code numbers with high 

frequencies were selected and combined to define the geometrical 

characteristics. Thirty-six geometrical characteristics were selected 

from the Opitz system. The selected geometrical characteristics are 

shown in Table 16. These characteristics were used to form the part-

characteristic matrix. This matrix was used as a basis to perform the 

ROCA and CASC clustering algorithms with the Opitz coding system. 

5. Part families of the Opitz/CASC method 

This method uses geometrical characteristics of parts as a basis 

for coding and similarity coefficients between parts for 

classification. The similarity coefficients were calculated based on 

the geometrical characteristics. Thus, the similarity coefficients 

showed the geometrical relationships of parts. Procedures for 

calculating these similarity coefficients were presented in Section E 

of Chapter VI. The data used in this method were the geometrical 

characteristics represented by the Opitz codes, the part name, and the 

part number, in effect, the part-characteristic matrix. 

The numbers of part families formed at different similarity 

coefficient levels are shown in Table 17. Five major part families 

were obtained at the similarity coefficient 0.74 with this method. The 

level was selected because the part families defined at this level was 

a approximately midway between two extremes 233 and 1. At this level 

of similarity coefficient, many families had only one part member. 

Only families which had ten or more part members were selected. Four • 
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TABLE 16. Selected geometrical characteristics from the Opitz system 

Main Group Characteristics description 

*1 - rotational parts w/o deviations ( L/D ̂  0.5 ) 

*2 - rotational parts w/o deviations ( 0.5 < L/D < 3 ) 

*3 - rotational parts w/o deviations ( L/D > 3 ) 

Basic *4 - rotational parts with deviations ( L/D 3 2 ) 
Shape *5 - rotational parts with deviations ( L/D > 2 ) 

*6 - flat parts ( A/B ̂  3, A/C > 4 ) 

*7 - long parts ( A/B > 3 ) 

*8 - cubic parts ( A/B ^ 3, A/C < 4 ) 

Main 
shape 
outside 

K g  

^10 
«11 

*12 
:̂ 13 
*14 
*15 
*16 
*17 

smooth, no shape elements 
stepped to one end with no shape elements 
stepped to both ends with no shape elements 
square or other regular polygonal section 
symmetrical cross-section producing no unbalance 
segments after rotational machining 
rectangular 
rectangular with one deviation 
rectangular with circular deviations 

*18 ~ without through bore, blind hole 
X]_9 - smooth or stepped to one end with no shape elements 

Internal «20 ~ smooth or stepped to one end with screwthread 
shape X21 - stepped to both ends with functional groove 
and X22 - no rotational machining 
shape *23 - external machined shape 
elements X24 - external shape with screwthread(s) 

*25 ~ principal bore with shape elements 
*26 ~ parallel principal bores 

X27 - no surface machining 
*28 ~ external plane surface and/or surface curved in 

Plane one direction 
surface X29 - external plane surfaces related to one another 
machining by graduation around a circle 

X30 - stepped plane surfaces 
*31 ~ groove and/or slots 

Auxiliary 
holes 
and 
gear teeth 

*32 
*33 
*34 
*35 

X 36 

no auxiliary holes, gear teeth and forming 
holes drilled in one direction 
holes drilled in more than one direction 
formed with no auxiliary holes and 
gear teeth 
formed with auxiliary holes and no gear teeth 



www.manaraa.com

154 

major part families were obtained in this method. The families and 

corresponding component parts of this method are shown in Table 18. 

TABLE 17. Number of clusters at each level of coefficient 

Level of similarity Number of 
coefficient families 

1.00 233 
0.99 175 
0.79 120 
0.74 86 
0.66 37 
0.59 14 
0.49 7 
0.42 5 
0.39 3 
0.00 1 

6. Part families of the Opitz/ROCA method 

This method is a coding and classification method in which 

geometrical characteristics of parts are used as a basis for a ranking 

process for rows and columns in part-characteristic matrix. The matrix 

after the first iteration was reviewed to investigate those geometrical 

characteristics or parts which might limit the formation of a block 

diagonalized matrix. 

Three disjoint classes were formed after first ROCA algorithm 

iteration. These classes represented each major groups representing 

the overall part shapes. The block diagonalized matrices were not 

formed in each major group. This was because two cases discussed by 
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TABLE 18. Part families formed by Opitz/CASC method (similarity 
coefficient = 0.74) 

Members (part number) 
Families 

20A3382X022 1C899514022 2R124724092 2R331019022 
7J5928 7J1025 5J1340 8J9259 
3J0601 8J8661 5J1553 5J2438 
4J4571 4T4632 9J3453 3T2321 
4J6485 3G0650 8J3554 4T0958 
4J3291 0W019819012 1E50I208012 8J0444 
1U4010 9J4077 4T4636 9J3441 
9J4097 9J4847 1E3943000A2 5J9110 

1 7575875001 3J7807 7J8308 8J8573 
(63 members) 6J7908 8J5875 7J7674 6F4350 

3P786933092 1C477219012 4T1014 1R124835072 
4T1014 1R124835072 4J2696 2R2617X0012 
2U223433272 2U740448932 2U741048932 36A2065X012 
2U223733272 3G2842 7J3897 6J9992 
3V708322012 2E542919042 9M5550 5J8774 
4T9156 3R124624092 6874138001 

1U0488 2J5143 8J0084 1U2177 
8J1701 5J8793 8J2308 7575955002 

2 4J1137 8J2045 7J2266 3J1970 
(26 members) 5J0899 1U2083 8J2305 9J1234 

4T1889 8J3665 3G2840 2G2841 
1E944223072 8J8829 8J0510 8J1917 
9J3382 6870007001 

8J5618 9T2887 7578431001 6870008002 
6870148002 6870112001 6870127001 6870092001 
6870093001 6874139001 6870239001 7578677001 
6874008002 7576896001 6874216002 6870407001 

3 7578887010 7578612001 7578887001 7578889001 
(37 members) 7578889002 6870043001 7578887002 7578889006 

6870060001 7574570001 6870167002 6870167004 
6870167005 7578887005 7578887006 7578887007 
6870364001 7578887003 7578887004 7578887009 
7578889004 

8J8660 7575872002 6870173002 6870174001 
6870181001 9T2382 1R250935162 1K586935162 
6870005001 7575872001 7575863006 10A7182X012 
2F1428000A2 2N5532000A2 6870004001 6870006001 

4 2R2454000A2 15A1288X012 7575872003 15A6470X012 
(58 members) 15A6480X012 15A6490X012 3N698122012 3N698322012 
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TABLE 18. (Continued) 

Members (part number) 
Families 

1H830814012 1J1277000B2 2L416322012 2L342619012 
2L373522012 15A6503X012 1B883119012 28A2514X012 
2E4085000A2 3C780819042 1L432314012 25A6687X012 
25A1289X012 6870007003 2J496219012 4E397919012 

4 T1095224102 1B169135012 7575863002 6870327001 
(Continued) 6870341001 6870444001 7575872004 7576591001 

1A510735072 38A2508X012 7575863004 38A2511X012 
1D228235072 6870008004 7610014003 7610493001 
7575863005 6870003001 

King [29] were occurred with the data collected for this research. The 

first case corresponded to some parts which had geometrical 

characteristics possessed by other identifiable groups. The second 

case corresponded to some geometrical characteristics which were 

possessed by a large number of parts. These two cases corresponds to 

the "case #1" and "case #2" discussed in the PFA/ROCA method. Thus, 

the ROCA algorithm was further applied for each major group. 

The relaxation procedures suggested by King [29] were applied to 

eliminate those geometrical characteristics and parts which limited the 

formation of the block diagonalized matrix. The geometrical 

characteristics which were possessed by the parts in other identifiable 

groups of parts were ignored because they limited the formation of 

block diagonalized matrix. The geometrical characteristics which were 

possessed by a relatively large number of parts were divided such that 

they belong to each identifiable groups. 
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The families which had ten or more part members were selected. 

Nine part families were obtained in this method. The part families and 

their members are presented in Table 19. 

7. Summary 

Part families identified by each coding and classification 

procedure have been described in this chapter. Each method yielded a 

different number of part families. The number of parts within each 

family also varied. Table 20 shows the number of families, the total 

number of parts grouped in families, and the percentage of grouped 

parts for each method. 

The Opitz coding method showed higher percentages of grouped parts 

than the PFA coding method. This was because the coding of a part for 

each of the two methods was based on different attributes. The Opitz 

coding method was based on the geometrical characteristics of a part. 

The PFA coding method was based on the process routings in which a 

variety of different machines were used in the data collected for this 

research. The Opitz coding method with the ROCA classification showed 

largest number of parts grouped in families. The geometrical 

characteristics of each part family are described in the following 

section. 

8. Justification of the exclusion of small part families 

There were many families which consisted of only one part member 

for each method. In order to keep the size of number of families 



www.manaraa.com

158 

TABLE 19. Part families formed by Opitz/ROCA method 

Members (Part number) 
Families 

6870444001 7575872004 6870327001 6870341001 
6870173002 6870174001 6870181001 1R125624092 

1 6870110001 7576591001 7575863004 7575872003 
(21 members) 1R126335072 1C794935032 1U222646172 T1173614012 

38A2508X012 38A2511X012 28A2514X012 1A510735072 
1D228235072 

1B169135012 7575863002 1K586935162 6870005001 
2 7575872001 7575863006 9T2382 1R250935162 

(17 members) 7575872002 8J8660 6870007003 7575863005 
2L339519012 T1095224102 7610014003 7610493001 
6870008004 

3 6870004001 6870006001 2N5532000A2 15A1288X012 
(11 members) 10A7182X012 2F1428000A2 2R2454000A2 1B883119012 

3S7445 11A5214X022 11A5216X012 

4 15A6490X012 3N698122012 3N698322012 15A6503X012 
(12 members) 15A6470X012 15A6480X012 2E4085000A2 3C780819042 

2L416322012 28A2519X012 1H830814012 1J1277000B2 

9M5550 9J3441 9J4097 9J4847 
3G2842 5J8774 4T9156 7575875001 
6P5391 8J0444 1U4010 9J4077 
4T4636 4T1014 7J3897 6J9992 

5 3V708322012 3R124624092 6F4350 3P786933092 
(40 members) 1C477219012 20A3382X022 5J9110 7J8308 

8J8573 1E3943000A2 6J7908 1C899514022 
2R2617X0012 , , 2U223433272 2U740448932 2U741048932 
36A2065X012 2U223733272 1R124835072 2R124724092 
2R331019022 3J7807 4J2696 2E542919042 

8J8661 5J2438 4J4571 8J3554 
6 8J9257 5J1553 3T2321 6874138001 

(16 members) 3J2975 3B186522012 8J5875 7J7674 
4T0958 3G0650 7J1025 7J5928 

6870407001 7578887010 6874008002 7576896001 
6870239001 7578887001 7578889001 7578889002 
7578431001 7578677001 6870060001 9T2887 
8J5618 5J8773 8J0130 2J8069 

7 6870008002 6874216002 6870112001 6870127001 
(41 members) 7578612001 6870148002 6874098001 6870092001 
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TABLE 19. (Continued) 

Families 
Members (Part number) 

6870093001 
7610464001 
9T1495 
6870026002 
6J0434 

6874139001 
7578614001 
9J4941 
6870020002 

6874140002 
6870007001 
7J8056 
6870021002 

7610167002 
6J0433 
6870027002 
8J2302 

8 
(11 members) 

6870167004 
7578887007 
6870148001 

6870167005 
6870364001 
6870167003 

7578887005 
6870167002 
7610463001 

7578887006 
7578424001 

9 
(15 members) 

8J2305 
2J5143 
8J2045 
8J1701 

5J0899 
5J8793 
7J2266 
8J2308 

3J1970 
1U2083 
9J1234 
6870008006 

1U0488 
4J1137 
1U2177 

TABLE 20. Summary of four methods 

PFA/CASC PFA/ROCA Opitz/CASC Opitz/ROCA 

Number of 
familes 5 5 4 9 

Total number 
of parts 
grouped 

103 161 184 184 

% of grouped 
parts 0.442 0.692 0.781 0.790 
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manageable, the families which had ten or more part members were 

selected for each method. This selection was arbitrary. In order to 

justify this selection, a sensitivity analysis was performed. The 

coding and classification was repeated for families which had five or 

more part members. The results are presented in Table 54 in Appendix 

D. As can be seen from this table, the results have not changed 

significantly except that the percentages of number of parts 

successfully grasped has increased slightly. Performance of this 

coding and classification methods relative to each other is relatively 

unchanged. 

C. Characteristics of Part Families 

1. Overview 

The geometrical and other relevant characteristics of part 

families for the design of grippers are presented and discussed in this 

section. The geometrical characteristics of a part were represented in 

terms of the geometrical code of the Opitz system. The other relevant 

characteristics of a part included part dimensions and weight. 

The first five digits of Opitz system code represent the 

geometrical characteristics of a part. Each digit represents the 

following geometrical characteristics: 

• 1st Digit; Part class 

• 2nd Digit; Overall or main shape 

• 3rd Digit; Rotational surface machining 

• 4th Digit; Plane surface machining 
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• 5th Digit; Auxiliary holes, gear teeth, and forming 

The most frequently used code numbers of each digit were selected 

to represent the geometrical characteristics of the family. The 

maximum and minimum dimensions were selected to represent the 

dimensional characteristics of the family. The maximum weight of the 

part within family was selected to represent the weight to be handled 

by the designed gripper. The following dimensional notation has been 

used in the tables presented in this section: 

L: a length of a rotational part (inches) 

D: a largest diameter of a rotational part (inches) 

A,B,C: lengths of three edges of a non-rotational part (inches) 

M; a weight of a part (lbs) 

Dj^in: a smallest diameter selected for a family (inches) 

Dmax* s largest diameter selected for a family (inches) 

^min* ^ minimum length of L selected for a family (inches) 

Lmax* s maximum length of L selected for a family (inches) 

AjjjjLn' s  minimum length of A selected for a family (inches) 

Ajjigjj: a maximum length of A selected for a family (inches) 

®min*' ® minimum length of B selected for a family (inches) 

Bmax* 3 maximum length of B selected for a family (inches) 

a minimum length of C selected for a family (inches) 

Cjpgjj: a maximum length of C selected for a family (inches) 

Mjogjj; a maximum weight selected for a family (lbs) 

2. Characteristics of part families with the PFA/CASC method 

Five major part families were obtained with this method. The 

Opitz codes along with dimensions and weight of each part within each 

family are shown in Tables 30-34 in Appendix C. The summaries of part 

families are presented in Table 21. 

The parts within families showed different geometrical 

characteristics. Thus, the most frequently used code numbers of each 
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TABLE 21. Characteristics of part families of PFA/CASC method 

Family Geometrical characteristics Dimensions Weight 

•Rotational part without 

deviation (L/D 3 0.5) 

.External: stepped to one end or 

smooth with no shape elements. 

.Internal: smooth or stepped to 

one end with screwthread. 

.External plane surface and/or 

surface curved in one direction. 

.No auxiliary holes. 

^max 7.438 

^min'O•5 
Dmax=10.188 

°min 1*372 Mmax=7.00 

.Cubic parts (A/B ^ 3, A/C ^ 4) 

•Overall shape: rectangular prism. 

.No rotational machining or bores 

.No surface machining 

.No auxiliary holes, gear teeth 

and forming. 

Amax"0'78 

^in"*^ • 4 
Bmax'O•5 
Bmin=0.203 

Cmax=0.428 

C j j j in  0 .2  

Mmax=2'0 

.Long parts (A/B ^ 3) 

.Shape Axis is straight, uniform 

cross section, and rectangular shape 

.No rotational machining or bores 

.No surface machining 

.No auxiliary holes, gear teeth 

and forming 

Amax=1.89 

Amin=0.796 

Bmax=0.422 

®min 
Cmax=0 '03 

Cmin=0.005 

^ax I'S 

.Rotational parts with deviation 

( L/D ^ 2). 

•Segments before rotational machining• 

•Internal rotational machining 

with no shape• 

•External plane surface and/or 

slot and/or groove, spline• 

•No forming, no gear teeth, and axial 

holes not related by drilling pattern. 

Lmax"4' 12 

^min~l* 062 

%ax~2 • 48 

^min~^* 
00 

Mmax=7.00 

•Cubic parts ( A/B ^ 3, A/C ^ 4)• 

•Block like parts with components 

with a mounting or locating surface. 

•Several principal bores, parallel. 

•Stepped plane surfaces at right 

angle, inclined and/or opposite. 

.No gear teeth, no forming, holes 

drilled in one direction. 

Ajpax"® •  875 

Amin=3'25 

®max"^•00 
Bmin=2.125 

Cmax=3.09 

Cmin'l'l 

Mmax=14.00 
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digit of Opitz system were selected to represent the geometrical 

characteristics of this family. Two part families (1 and 4) were 

classified as rotational parts in this method. Family 1 was classified 

as rotational parts without deviation. Family 4 was classified as 

rotational parts with deviation. Three families were classified as 

non-rotational parts. The three families represented flat, long and 

cubic parts respectively. The maximum and minimum dimensions are shown 

for each family to represent the size of a part. The maximum weight is 

also shown in the table for each family. 

This method yielded the smallest percentage of grouped parts. 

Each family contained some parts which were different from the selected 

basic overall shape in this method because the coding of this method 

was based on the process routings. For example, there were some non-

rotational parts in Family 1 which was classified as a rotational part 

without deviation. 

3. Characteristics of part families with the PFA/ROCA method 

Five major part families were obtained with this method. The 

geometrical codes along with .part dimensional features and weight of 

are presented in Tables 35-39 in Appendix C. The summaries of part 

families for this method are shown in Table 22. 

Four families were classified as rotational parts in this method. 

One family was classified as non-rotational and represented flat parts. 

This method used processing routings as a basis for coding a part. The 

ROCA algorithm was used to classify parts into families. The 
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TABLE 22. Characteristics of part families of PFA/ROCA method 

Family Geometrical characteristics Dimensions Weight 

.Rotational parts without 

deviation (0.5 3 L/D 3 3). 

.External shape: stepped to one end 

or smooth with no shape elements. 

.Internal shape: smooth or stepped 

to one end with screwthread. 

.External plane surfaces related to one 

another by graduation around a circle. 

•No auxiliary holes 

^max~^•5 
^min~2-125 

^maxT^O. lBVS 

^ax  ^  '  
00 

.Rotational parts w/ deviation (L/D >2) 

•Overall shape: around one axis with no 

segment and symmetrical cross-section. 

.Internal rotational machining with 

stepped towards one or both ends. 

.External plane surface and/or slot 

and/or groove, spline. 

.No auxiliary holes, gear teeth, and 

forming. 

Lmax-6 .8125 

^min 2 46 

=2.625 
"max 
Dmin=0.812 ^ax  9.00 

•Rotational parts w/o dev. (L/D ^ 3). 

•External: smooth, no shape elements. 

.Internal: stepped to one end with no 

shape elements. 

.No surface machining. 

.No auxiliary holes. 

^max 27 0 
=0.04 

"mm , 
Dmin" l "25  

Dmin"0'375 
^max 

=4.00 

.Flat parts ( A/B < 3, A/C > 4). 

.Overall shape: rectangular plane. 

.No rotational machining or bores. 

• No surface machining. 

.No auxiliary holes, gear teeth 

and forming. 

Aj j ,ax~8.756 

A j^ in=0.125 

Bmax"5 '795 

Bmin-0"09 

Cmin=0.025 

^ax 4'00 

2 ) ,  .Rotational parts w/o dev. (L/D ^ 

.Overall shape: segments before 

rotational machining. 

•Internal rotational machining with 

stepped towards one or both ends. 

•External plane surface and/or slot 

and/or groove, spline. 

.No auxiliary holes, gear teeth, 

and forming. 

W=5-0625 

Lmin= l '062 

Dmaxr5 '875 

Dmin-1'0 ^ax  5.00 
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geometrical relationships between parts within each family were not 

stronger than for the PFA/CASC method. However, more parts than the 

PFA/CASC method were classified in various part families. 

4. Characteristics of part families with the Opitz/CASC method 

Four part families were obtained with this method. Geometrical 

characteristics, dimensions, and weight for each family are shown in 

Tables 40-43 in Appendix C. Summaries of part families for this method 

are shown in Table 23. 

The codes of the Opitz system were the basis for coding. 

Classification was performed using the similarity coefficients. Two 

families were classified as rotational parts in this method. Two 

families were classified as non-rotational and represented cubic and 

flat parts respectively. 

Members within each family were related to each other by the 

geometrical characteristics; not by the process routings. The smallest 

number of part families were obtained with this method. However, a 

strongest geometrical relationships between parts within families were 

achieved with this method. This was because the classification was 

performed based on the similarity coefficients. 

5. Characteristics of part families with the Opitz/ROCA method 

Nine part families were obtained with this method. The 

geometrical characteristics and dimensions of each part within each 

family are shown in Tables 44-52 in Appendix C. A summary of part 

families for this method are shown in Table 24. 
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TABLE 23. Characteristics of part families of Opitz/CASC method 

Family Geometrical characteristics Dimensions Weight 

.Rotational parts with 

deviation ( L/D 3 2). 

.Overall shape: around one axis with 

square or other regular polygonal. 

.Smooth internal rotational machining. 

.External spline and/or slot. 

.Axial holes not related by drilling 

pattern and no forming and gear teeth. 

^max 7*25 

Lmin-1 '062 

Dmax=8.375 

Dmin=0.3 Mmax=16.5 

.Cubic parts ( A/B ^ 3, A/C < 4). 

.Overall shape: block like parts with 

with mounting or locating surface. 

.Several principal bores, other than 

parallel. 

.Stepped plane surfaces. 

.Holes drilled in one direction only. 

Amax"5'00 
Ajn in=0.7188 

BmaxT^S.OO 

Bmin=0.6875 Mn^=20.0  

Cjpax 3 .09  

Cmin=0.375 

.Flat parts ( A/B > 3). 

.Overall shape: plane rectangular. 

.No rotational machining or bores. 

.No surface machining. 

.No auxiliary holes, gear teeth 

and forming. 

Ajpax~19*245 

A jn in=0.375 

Bmax=6.463 

Bmin"0"155 

Cmin=0.005 

"max=8-0  

.Rotational parts without 

deviation ( 0.5 < L/D < 3 ). 

.External shape: smooth, no shape 

elements. 

.Without through bore blind hole. 

.No surface machining. 

.No auxiliary holes. 

^max~27.9  

Lmin=0'032 
Dmax=10.875 

Dmin=0.031 %ax 
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TABLE 24. Characteristics of part families of Opitz/ROCA method 

Family Geometrical characteristics Dimensions Weight 

.Rotational parts without 

deviation ( L/D £ 0.5). 

.External shape: round, smooth, 

no shape elements. 

.Without through bore, blind hole. 

.No surface machining. 

.No auxiliary holes. 

Lmax=2.6875 

Lmin-0'0002 
Dmax=6.37 
Dmin=0.125 ^ax~® * 0 

.Rotational parts without 

deviation ( 0.5 < L/D < 3 ). 

.External shape: round, smooth, 

no shape elements. 

.Without through bore, blind hole. 

.No surface machining. 

• No auxiliary holes. 

Lmax"3 .69 

^min~0 .04 

Dmax=3 .69 

Dmin=0 .031 Mmax"8'5 

.Rotational parts without 

deviation ( 0.5 < L/D < 3). 

.External shape: stepped to both 

ends with no shape elements. 

.Without through bore, blind hole. 

.No surface machining. 

.No auxiliary holes. 

Lmax=14 .9 

Lmin-0" 718 

Dmax"4• 875 

^min~0• 2813 Mmax"5'0 

^max 7 .5 

Lmin-0 .625 

°max~7 .125 

°min=0 .869 

.Rotational parts without 

deviation ( L/D ^ 3). 

.External shape: stepped to one end 

or smooth with no shape elements. 

.Internal shape: smooth or stepped 

to one end with no shape elements. 

.External plane surfaces related to one 

another by graduation around circle. 

.No auxiliary holes. 

Mmax=7'0 

.Rotational with deviation 

( L / D < :  2 ) .  

.Overall shape: symmetrical cross-

section producing no unbalance. 

.Internal shape: stepped toward one 

or both ends. 

.External plane surfaces related to one 

another by graduation around a circle. 

.Axial holes ot related by drilling 

pattern. 

^max 7"25 
Lmin=l'062 
Dmax=8.375 
Dmin=0.4688 

^ax~7 • 00 
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TABLE 24. (Continued) 

Family Geometrical characteristics Dimensions Weight 

.Rotational part with deviation 

.Overall shape: symmetrical cross-

section producing no unbalance. 

.Internal shape: stepped towards one 

or both ends. 

.External plane surface and/or slot 

and/or groove, spline. 

•Axial hole(s) not related by 

drill pattern. 

Lmax-8"25 
L^in=1.03 

Dmax=3.011 

Dmin^^'3 
Mmax"lG.5 

.Flat parts ( A/B < 3, A/C > 4). 

.Overall shape; plane rectangular. 

.No rotational machining or bore(s). 

.No surface machining. 

.No gear teeth, no forming, and 

holes drilled in one direction only. 

AmaxT^A-O 
^minrO'lZS 
Bmax=10.875 

B„in=0.09 
^ax 
Cmin=0'005 

Mmax=12.0 

.Long parts ( A/B > 3). 

.Shape axis-straight and rectangular 

with uniform cross-section. 

.No rotational machining or bore(s). 

.No surface machining. 

.No auxiliary holes, gear teeth 

and forming. 

^ax 25.593 

Am^n=l'068 
Bmax=7.488 
Bn, in=0.325 

^ax  3*272 

Cmin=0'03 

^ax 7 • 0 

.Cubic parts ( A/B ^ 3, A/C < 4 ). 

.Shape axis straight and rectangular 

with varying cross-section. 

.Several principal bores, parallel. 

.Groove and/or slot. 

.Holes drilled in one direction only 

no gear teeth and forming. 

^ax 5.94 
; ^ in=3.5  

Bmax=4'813 
Bmin=0.75 

^ inax  2 .86  

Cmin=0 '124 

^ax 11*0 

Six part families were classified as rotational parts in this 

method. Three families were classified as non-rotational and 

represented flat, long, and cubic parts respectively. Each family was 

well represented each of class of the Opitz coding and classification 
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system in which eight classes were defined based on the overall shape 

and the dimensional ratio of a part. 

The largest number of parts were classified into nine groups with 

this method. The largest number of part families was obtained with 

this method. Certain families had very similar geometrical 

characteristics with other families. Those families can be combined if 

one gripper set can grasp parts from both groups successfully. 

6. Summary 

The geometrical characteristics, dimensions and weight of each 

family were obtained and described in this chapter. A gripper set will 

be configured for each family in the chapter that follows. Two 

families can be combined if one gripper set can successfully grip parts 

from both families. 

The percentage of parts which can be successfully grasped by the 

configured gripper set will also be determined for each family. This 

will yield expected percentages of parts which can be grasped 

successfully with the selected gripper set for each method. The coding 

and classification method which shows the largest percentage of 

successful grips can be also determined as result of the above 

analysis. 
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VIII. GRIPPER CONFIGURATIONS AND EVALUATIONS 

A. Introduction 

A wide variety of conventional grippers are available for 

workpieces of different shapes and sizes. In order to select a 

suitable gripper, the exterior geometry of the workpiece to be grasped 

must be known. It is apparent that different grippers are required to 

grasp a solid cylindrical part as opposed to a thin, flat, workpiece. 

Rimmed edges or flanges on workpieces may be utilized to advantage for 

gripping. Workpieces of large size and odd shape may require specially 

designed grippers. It is also obvious that the material properties of 

the workpiece, such as the specific weight, modulus of elasticity, 

surface conditions, roughness, contamination, fragility, etc., are 

equally important factors that must be considered in gripper design. 

In this research, the Opitz coding and classification system was 

used to select the geometrical and other features of parts related to 

the configuration of a gripper. In order to obtain these features, the 

the frequencies of each geometrical characteristic present in all the 

parts were determined. The geometrical characteristics were used in 

configuring specific gripper sets for part families. 

A gripper was configured for each part family defined by the four 

different coding and classification methods previously described. The 

"best" coding and classification method was selected based on the 

number of parts which could be grasped successfully by the gripper set. 
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B. Configurations of Grippers 

1. Overview 

Different gripper types can be applied to physically constrain a 

part based on its geometry. In this research, four different jaw 

shapes of two finger mechanical gripper were considered. These 

included "C-C", "V-V", "V-P", and "p-p" types of jaw shapes. Figures 

illustrating these jaw shapes were presented in Chapter V. Vacuum and 

magnetic grippers were also considered as possible gripper types to 

handle flat parts. 

The first five digits of the Opitz system specify the geometrical 

characteristics of a part. The gripper type was determined based on 

the selected geometrical characteristics of each part family. The 

dimensions of the selected gripper type were then determined. The 

number of parts which can be grasped by the configured gripper were 

then determined. 

2. Determination of gripper types 

The families obtained in the previous chapter showed various 

geometrical characteristics and part dimensions. Each family contained 

the geometrical characteristics in terms of the part's class, overall 

or main shapes, shapes of rotational surface machining, shapes of plane 

surface machining, and auxiliary features. The auxiliary features 

included holes, gear teeth, and forming. In this section, the gripper 

types are determined for each family based on the family's geometrical 

characteristics. 
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For part families with cylindrical external shape, the "C-C", "V-

V", and "v-P" jaw shapes were selected. The "p-p" jaw was selected for 

the part whose external shape was rectangular. Vacuum and magnetic 

grippers were used to handle flat parts. 

A vacuum gripper was selected for handling flat parts which was 

made of light metal and had the auxiliary holes on its gripping 

surface. A magnetic gripper was selected for the flat parts made of 

steel and had no auxiliary holes on its gripping surface. Table 25 

shows the selected gripper types for each part family defined by the 

four different coding and classification systems used in this research. 

3. Determination of gripper dimensions 

The gripper types were selected based on the geometrical 

characteristics of part families defined by the four coding and 

classification systems in the previous section. The dimensions of 

part's overall shape selected for each part family were also presented 

along with the geometrical characteristics in Chapter VII. 

The dimensions of the selected gripper types were determined by 

using the criteria for successful grips. These criteria were 

previously described in Chapter V. For example, part family 1 of the 

PFA/CASC method had the following geometrical and dimensional 

characteristics ; 

• Overall shape: cylindrical 

• External shape: stepped to one end or smooth with no shape 

elements 

• Internal shape: smooth or stepped to one end with screwthread 

• Plane surface machining: plane surface and/or surface curved 

in one direction 

• No auxiliary holes 
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TABLE 25. The part families and their selected jaw shapes 

Method Family Gripper types Jaw shape 

"C-C" 

1 Mechanical gripper "V-V" 

"V-P" 

PFA/CASC 2 Mechanical gripper "P-P" 

3 Mechanical gripper "P-P" 

4 Mechanical gripper "P-P" 

5 Mechanical gripper "P-P" 

"C-C" 

1 Mechanical gripper "V-V" 

"Y_p" 

PFA/ROCA 2 Mechanical gripper "P-P" 

3 Mechanical gripper "P-P" 

4 Vacuum gripper 

5 Mechanical gripper "p_p" 

1 Mechanical gripper "P-P" 

2 Mechanical gripper "P-P" 

Opitz/CASC 3 Magnetic gripper 

"C-C" 

4 Mechanical gripper "V-V" 

"V-P" 

"C-C" 

1 Mechanical gripper "V-V" 

"V-P" 

"C-C" 

2 Mechanical gripper "V-V" 

"V-P" 

"C-C" 

3 Mechanical gripper "Y-v" 

Opitz/ROCA "y_p" 

"C-C" 

4 Mechanical gripper "V-V" 

"V-P" 

5 Mechanical gripper "P-P" 

6 Mechanical gripper "P-P" 

7 Vacuum gripper 

8 Mechanical gripper "P-P" 

9 Mechanical gripper "P-P" 
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• Dimensions: 0^^=10.188, D^in=1.372, L^=7.i3Q. ^=0-5 

(inches) 

• Weight: «^^^=10.00 (lbs) 

The "C-C", "V-V", and "V-P" jaw shapes were selected because the 

overall shape of this part family was cylindrical. The dimensions for 

each jaw shape were calculated based on the maximum and minimum 

diameters of the part family. The dimensional conditions of successful 

grips were derived in Chapter V. By using these conditions, the 

parameters of the selected jaw shape were determined. These parameters 

were illustrated in Chapter V along with diagrams of the jaw shapes. 

The following equations were used to calculate the dimensions of the 

jaw shapes selected for the family of the PFA/CASC method: 

"C-C" jaw shape: 

^o = Dmax/2 =5.094 

^o =  Dmin /2  =0 .686 

®open ~ ^max ^^o" 10 *188 

"V-V" jaw shape: 

®t ~ '^min/^max ) 68.47° 

\  = Dmin/2*sinet = 0.738 

®open ~ ^max •*" ~ 11*663 

"V-P" jaw shape: 

€p = sin ((D[nax ~ '^min^/^max^ ~ 59.92° 

Xp = ((1 + sinep)*Dmin)/2*sinep = 1.479 

®open ~ ^max ^p ~ 10.188 

where : D^ax " 10«188 in 

Dmin = 1.372 in 
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The dimensions of other gripper types were calculated in a similar 

fashion. Table 26 shows the determined dimensions of the selected 

gripper type for each part family. 

C. Gripper Evaluation 

1. Overview 

The configured gripper was evaluated by using the conditions for 

successful grips presented in Chapter V. The "best" gripper 

configuration was selected based on the number of parts which were 

grasped successfully. A robotic gripper set was also determined for 

each coding and classification method. The percentage of parts which 

could be successfully grasped by the gripper set was next ascertained. 

The best coding and classification system was determined based on this 

percentage. 

2. Gripper evaluation within a part family 

A gripper was configured for each part family based on the 

geometrical characteristics and dimensions obtained. Each configured 

gripper could handle only limited part geometries and dimensions. By 

using the three conditions discussed in the Chapter V, each part within 

a family was tested to determine whether it could be grasped 

successfully by the configured gripper. The three conditions are as 

follows : 

Condition 1: If a gripper is configured with a jaw shape other 

than "P-P", the contour of the part must be 

enclosed within the shape of the jaw. 

Condition 2; The maximum dimension of the part must be in the 
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TABLE 26. The dimensions of the selected gripper type 

Method Family Gripper type Dimensions 

C-C ro=5.094 XQ=0.686 Bopen=ll'560 

®open H'G63 

Bopen=ll'667 

1 V-V 6^=68•47 Xt=0.738 

Bopen=ll'560 

®open H'G63 

Bopen=ll'667 V-P ep=59.92 Xp=1.479 

Bopen=ll'560 

®open H'G63 

Bopen=ll'667 

2 P-P Bopen=0.428 

PFA/CASC 3 

4 

5  

P-P 

P-P 

P-P 

Bopen=0'030 

Bopen=2-480 

Bopen"4'790 

C-C rQ=5.094 XQ=0.560 Bopen=ll'308 

Bopen=l l '374 

Bopen H*376 

1  V-V €^=70.64 Xt=0.593 

Bopen=ll'308 

Bopen=l l '374 

Bopen H*376 V-P 6p=62.89 Xp=1.188 

Bopen=ll'308 

Bopen=l l '374 

Bopen H*376 

PFA/ROCA 

2  

3 

4 

5  

p-p 

p-p 

Vacuum 

P-P 

Bopen=2.860 

Bopen=l -250 

Bopen"5 '875 

1  P-P Bopen"®*^75 

2  P-P Bopen=3 '090 

Opitz/CASC 3 Magnetic 

C-C rQ=5.438 Xq=0.016 Bopen=10.906 

Bopen 10*906 

Bopen=10 '906 

4  V-V 6^=85.93 Xt=0.016 

Bopen=10.906 

Bopen 10*906 

Bopen=10 '906 V-P ep=85.67 Xp=0.031 

Bopen=10.906 

Bopen 10*906 

Bopen=10 '906 

C-C rg=3.185 Xo=0.063 Bopen=6.496 

Bopen=6.496 

Bopen=6*496 

1  V-V 6^=81.95 Xt=0.063 

Bopen=6.496 

Bopen=6.496 

Bopen=6*496 V-P 6p=78.63 Xp=0.126 

Bopen=6.496 

Bopen=6.496 

Bopen=6*496 

C-C ro=1.845 Xo=0.016 

2  V-V 6^=84.74 X^=0.016 

V-P €p=82.57 Xp=0.032 

C-C rQ=2.438 Xo=0.141 Bopen_5 '15G 

Bopen"^ "166 3 V-V €^=76.10 Xt=0.145 

Bopen_5 '15G 

Bopen"^ "166 
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TABLE 26. (Continued) 

Method Family Gripper type Dimensions 

Opitz/ROCA 

V-P ep=70.44 

C-C rQ=3.563 

4 V-V 6^=69.56 

V-P 6p=61.41 

5 P-P 

6 P-P 

7 Vacuum 

8 P-P 

9 P-P 

"P-

¥ 

°open 

"open 

®open 

®open 

=5.166 

,=7.995 

=8.053 

=8.054 

Bopen=8.375 

Bopen"3 '011 

Bopen"3'272 

®open~2•860 

Notation; 

Tq = Radius of semi-circular notch (inches) 

Xq  = Depth of the notch of "C-C" jaw shape (inches) 

= Depth of the notch of "V-V" jaw shape (inches) 

Xp = Depth of the notch of "V-P" jaw shape (inches) 

®open ~ Maximum opening range (inches) 

= Notch angle of "V-V" jaw shape (°) 

Cp = Notch angle of "V-P" jaw shape (°) 
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range of the maximum opening distance, 

The minimum dimension of the part must be greater 

than the length of the notch. 

Condition 3: The weight of a part must be less than or equal 

the maximum weight determined by the part family. 

Table 27 shows the gripper types and the corresponding geometrical 

shapes to be handled. The Opitz codes of each part were used to 

checked if their geometrical shapes conformed to the shapes shown in 

Table 27. If the geometrical shapes conformed, the first condition was 

satisfied. The second condition was checked based on the dimensions of 

the part. Finally, the third condition was tested by checking the 

weight of each part. 

TABLE 27. The gripper types and corresponding geometrical shapes which 

satisfy the first condition 

Gripper 

type 

Jaw 

shape 

Geometrical shapes 

C-C Overall shape: cylindrical 

External shape: round 

Mechanical 

gripper 

V-V 

V-P 

Overall shape: cylindrical 

External shape: round or hexagonal 

Overall shape: cylindrical 

External shape; round 

P-P Overall shape: long and cubic 

External shape: rectangular 

Vacuum 

gripper 

Overall shape: flat 

External shape: no holes and light weight 

Magnetic 

gripper 

Overall shape: flat 

Material: Ferrous metal 



www.manaraa.com

179 

By using the three conditions, each part was evaluated to 

determine whether it could be grasped successfully by the configured 

gripper. Table 28 shows the total number of parts of each part family 

and number of parts that were successfully grasped by the configured 

gripper. 

3. Determination of gripper sets 

A gripper set was determined for each coding and classification 

method. If the same grippers were configured for a certain two 

families, the gripper with larger dimensions was selected for overall 

use. Table 29 shows the gripper set determined for each coding and 

classification method. The dimensions of the configured gripper and 

the number of parts which were grasped by the gripper set are also 

presented in this table. 

Results of an identical analysis for families of five or more 

parts are presented in Appendix D. The results are consistent with 

those presented in Table 29. 

4. Summary 

The gripper configured for each part family was evaluated by using 

the three conditions for successful grips. The gripper set was also 

defined based on the number of parts which could grasped successfully 

by the configured grippers. The percentage of parts which could be 

successfully grasped by the gripper set was ascertained from the number 

of parts grasped successfully by the gripper configured for each family 

of each coding and classification method. 
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TABLE 28. Results of gripper evaluation within family 

Part Total number Gripper Number of parts 

Methods family of parts type grasped successfully 

C-C 12 

1 17 V-V 12 

V-P 10 

PFA/CASC 2 10 P-P 5 

3 10 P-P 4 

4 46 P-P 25 

5 20 P-P 14 

C-C 12 

1 31 V-V 14 

V-P 10 

PFA/ROCA 2 45 P-P 28 

3 22 P-P 9 

4 32 Vacuum 12 

5 30 P-P 22 

1 63 P-P 42 

2 25 P-P 24 

Opitz/CASC 3 37 Magnetic 11 

C-C 53 

4 58 V-V 56 

V-P 50 

C-C 20 

1 21 V-V 20 

V-P 18 

C-C 14 

2 17 V-V 16 

V-P 13 

C-C 10 

3 11 V-V 11 

Opitz/ROCA V-P 10 

C-C 9 

4 12 V-V 11 

V-P 5 

5 40 P-P 37 

6 16 P-P 16 

7 41 Magnetic 22 

8 11 P-P 10 

9 15 P-P 15 
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TABLE 29. Result of gripper evaluation for each coding and 

classification method 

Method Part 

family 

Gripper 

type 

Dimensions Number 

of parts 

grasped 

1 

C-C 

V-V 

rQ=5.094 

6^=68.47 

Xq=0.686 

Xt=0.738 

Bopen=ll'560 

Bopen=11.663 

12 

12 

2 P-P Bopen"0"428 5 

PFA/CASC 3 P-P Bopen=0'030 4 

4 P-P Bopen=2'480 25 

5 P-P Bopen"4"790 

Total 

14 

60 

1 V-V e^=70.64 Xt=0.593 Bopen"ll '374 14 

PFA/ROCA 

2 

3 

4 

P-P 

P-P 

Vacuum 

Bopen=2'860 

Bopen"l"250 

28 

9 

12 

5 P-P Bopen"^•875 

Total 

22 

85 

1 P-P Bopen"8'375 42 

2 P-P Bopen=3-090 24 

Opitz/CASC 3 Magnetic 11 

4 V-V 6^=86.93 X^—0.031 Bopen=10.906 

Total 

56 

133 

Opitz/ROCA 

1 

2 

C-C 

V-V 

V-V 

rQ=3.185 

6^=81.95 

6 ̂ =84.74 

Xo=0.063 

Xt=0.063 

X^—0.016 

Bopen=6.496 

Bopen=6.496 

Bopen"3'721 

20 

20 

16 

3 V-V €^=76.10 Xt=0.145 Bopen'S'lGS 11 
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TABLE 29. (Continued) 

Method Part 

family 

Gripper 

type 

Dimensions Number 

of parts 

grasped 

Opitz/ROCA 4 V-V £^-=69.56 X^.=0.464 Bqpqjj=8.053 11 

5 P-P Bopen=8.375 37 

6 P-P Bopen=3'011 16 

7 Vacuum 22 

8 P-P Bopen=3.272 10 

9 P-P Bopen=2•860 15 

Total 158 

The Opitz/ROCA method yielded the highest percentage of parts 

which were grasped successfully by the gripper set. The PFA/CASC 

method showed the lowest percentage of successfully grasped parts. The 

Opitz coding method yielded the better percentage than the PFA coding 

method. This was because the coding of the Opitz system was based on 

the geometrical characteristics parts. The coding of the PFA method 

was based on the process routings of a part. Inspection of Table 29 

shows only small differences in the percentages associated with the 

ROCA and CASC classification methods. Thus, the method of coding is 

more important than the method of classification in defining part 

families. 
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IX. CONCLUSIONS 

This study has been conducted to use part coding and 

classification systems in the design of robotic gripper sets. The 

purpose of this study was first to determine a part coding 

classification system based on common gripping characteristics and part 

geometries. A second purpose was to conceptually design a set of 

robotic grippers that can manipulate the respective families of parts 

within a given size and weight range. Production sequences and part 

geometries have been analyzed to determine common gripping 

characteristics. A third purpose was to estimate the reasonable 

percentage of parts which can be grasped successfully by the defined 

robotic gripper set. 

Four coding and classification systems were used to define the 

part families. These systems included the PFA/CASC, the PFA/RCCA, the 

Opitz/CASC, and the Opitz/RCCA. Computer software for each of the four 

systems was developed in this research. By using this software, the 

part families were defined for each system. 

A gripper set was configured for each part family. The gripper 

features included in this study were the gripping mechanism and the jaw 

shapes. The gripper mechanisms adopted in this research were two 

finger mechanical gripper, a magnetic gripper, and a vacuum gripper. 

These gripper types have been most widely used in manufacturing 

environments. The jaw shapes included in this research were a twin 

semi-circular notch ("C-C"), a twin V-shaped notch ("V-V"), a 
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combination of V-shaped notch and plane shape ("V-P"), and a twin plane 

shapes ("P-P"). 

Each part within part families was tested to determine whether it 

could be successfully grasped by the gripper configured for the part 

family. Based on the number of parts which were grasped successfully, 

the robotic gripper set was defined for each method. The reasonable 

percentage of parts which could be grasped by the robot gripper set was 

obtained for each coding and classification method. 

Based on the analyses performed in this study, the following 

conclusions are apparent: 

• The Opitz/ROCA method yielded the highest percentage of parts 

which were successfully grasped by the defined the robotic 

gripper set. 

• Two finger mechanical grippers with "v-v" and "P-P" jaw shapes 

were included in the gripper set for all four methods. 

• The Opitz coding method was the better than the PFA coding 

method in terms of percentages of parts grasped. This is 

because the coding of the Opitz system is based on geometrical 

characteristics. 

• The "V-V" jaw shapes was performed better than "C-C" and "V-P" 

jaw shapes in terms of the number of parts grasped 

successfully. 

• With the defined robotic gripper set, two coding methods 

showed the high percentages of parts which were grasped 

successfully. This indicated that the coding was important in 

defining part families than the classification methods. 

Assembly is the most advanced, complex and sophisticated application of 

robots at the present time. However, to reduce the time and cost 

occupied by assembly tasks to a minimum, it is necessary to devote 

attention to the design of grippers. It is desirable to design and 
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build a set of grippers that can be used in a manufacturing 

environments. Current technology restricts robots to special purpose 

or single part tasks. Use of a standard set of grippers may 

considerably reduce tooling costs for job shops, small manufacturers, 

and assembly operations. This is because grippers, at present, are 

usually custom designed and fabricated for one, and only one, 

production task. In addition, developing a standard robotic gripper 

set would convert single-purpose, machine-tending robots into flexible 

manufacturing cells. This is valuable in a job shop or assembly 

environment or in small manufacturing facilities. 

The commercial availability of a standard set of grippers will 

help make robots more economically and technically feasible for small 

and medium-sized production organizations. Finally, a standard set of 

grippers will open the door to enable robotics to be used in a wider 

range of manufacturing applications. 
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1000 
1010 
1020 
1030 
1040 
1050 
1080 
1081 
1082 
1083 
1070 
1080 
1090 

* » 
* Computer Aided Opitz Coding System * 
* * 

* Olgiti - Digits: Save the coding digit * 

* * 

» c: Array to store the code digits of a part * 
* 1: Largest dimension for a rotational part * 
* d: Largest diameter for a rotational part « 
* « 

« * 

********************************************,*********,************ 

1100 dim arrypname$(300),arrypnum$(300),c(300,8).toi(300) 
1110 key off 
1120 space1$=" " 
1130 c1s : locate 5,10 
1140 print "*»****»«** MENU **********" 
1150 locate 7,10 
1180 locate 8,10:print "1. Read the code data file" 

1170 locate 9,10:print "2. Correction" 
1180 locate 10,10:print "3. Coding" 
1190 locate 11,10:print "4. Exit" 
1200 print 
1210 locate 13,10:input "Enter the choice "; sleet 
1220 if sleet = 1 then gosub 1300:goto 1130 
1230 if sleet = 2 then gosub 1500:goto 1130 
1240 if sleet = 3 then gosub 1715:goto 1130 
1250 if sleet = 4 then 1251 

1251 1 print using " ";"Part Name", 
1 print using " ";"Part Number" 
Iprint 

1252 for i = 1 to j-1 

1253 Iprint using " ":arrypnames(i); 
Iprint arrypnumS(1), 
Iprint c(i.1):c(i,2):c(i,3);c(i,4):c(i,5):c(i,8): 
Iprint c(i,7):c(i,8): toi(i) 

1254 next 
1255 end 

1280 ' 

1270 ' Read in opitz code 
1280 ' 

1290 ' 
1300 open "program code.dat" for input as ¥2 
1310 j=1 

1320 if eof(2) then 1380 
1330 input #2,pname$,pnum$,d1g1,dig2,dig3,dig4,digs,d1ge,dig7,digs,t 

FIGURE 49. The program listing of the Opitz system 
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arpypname$(j)=pname$:arrypnumS(j)=pnum$ 
c(j,1)=d1g1:c(j,2)=d1g2:o(j,3)=d1g3 
c(j,4)=dig4:c(j,5)=dlg5:c(j,6)=dig8 
c(j,7)=d1g7:c(j,8)=dlg8:toi(J)=t 

1340 j=J+1 
1350 goto 1320 
1360 close #2 
1370 for k=1 to j-1 

1380 cIs;locate 10 
1390 print "Part ";k 
1400 print 
1410 print "Part Name: arrypnames(k) 
1420 print "Part Number: ":arrypnum$(k) 
1430 print 
1440 print "Code: ";c(k,1);c(k,2):c(k,3):c(k,4);c(k,5); 

print c(k,6);c(k,7);c(k,8);tol(k) 
1450 print 

1460 print "Press any key to continue" 
1470 a$=inkey$:if a$="" then 1470 
1480 next 
1490 return 
1500 ' 
1510 ' Correction is made on the code 
1520 ' of the part 
1530 ' 

shell "copy program code.dat program code.bak" 
1531 open "program code.dat" for input as #2 
1532 j=1:m=1:c1s 

1533 if eof(2) then 1537 
1534 Input ^2,pnameS,pnum$,dig1,dig2,dig3,dig4,digs,dige,dig7,digs,t 

arrypnames(j)=pnameS:arrypnumS(j)=pnumS 
c(j.1)=dig1:c(j,2)=dig2:c(j,3)=dig3 

c(j,4)=dig4:c(j,5)=dig5:c(j,6)=dig6 

c(j,7)=dig7:c(j,8)=d1ga:tol(j)=t 
1535 j=j+1 

1536 goto 1533 
1537 close #2 
1538 for k = 1 to j-1 
1539 print k,arrypnames(k),arrypnumS(k),c(k,1);c(k,2);c(k,3);c(k,4); 

print c(k,5):c(k.6);c(k,7):c(k,8); toi(k) 

1540 if k 15*m and k j-1 then goto 1881 
1541 locate 18 
1550 input "Do you want correct any code of a part (y/n) ";ansS 
1560 if ansS = "n" then goto 1660 

1570 input "Enter the part number you want to correct ";cornum 
1580 gosub 1724;els 
1590 arrypnames(cornum)=pnames 

FIGURE 49. (Continued) 
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1800 arrypnums(cornum)=pnum$ 
1610 c(cornum,1)=d1g1:c(cornum,2)=d1g2:c(cornum,3)=d1g3 
1620 c(cornum,4)=d1g4:c(cornum,5)=d4gS:c(cornum,6)=d1g6 
1630 c(cornum,7)=d1g7:c(cornum,8)=d1g8:to1(cornum)= to1eranca 
1660 m=m+1:c1s 

1861 next 

open "program code.dat" for output as #i 
for n = 1 to j-1 

write #1,arrypname$(n),arrypnum$(n),c(n,1),c(n,2),c(n,3),c(n,4),c(n,5), 
c(n,6),c(n,7),c(n,8),to!(n) 

next 
close #1 

1670 return 
1680 ' 

1690 ' Start of coding or correction of 
1700 ' existing code 
1710 ' 
1715 n=j 

1716 gosub 1724 
1717 els:locate 5 

1718 open "program code.dat" for append as #1 
1719 write pnameS,pnum$,digl,dig2,dig3,dig4,dig5,dig6,dig7,d1g8,tolerance 
1720 close #1 

open "program dimen.dat" for append as #3 
write ¥2, digl,dig2,dig3,1,d,a,b,c,weight,tolerance 
close #3 
1=0:d=0:a=0:b=0:c=0:weight=0:toierance=0 

1721 input "Do you want to code another part (y/n) ";ans$ 
1722 if ans$ = "y" then n=n+1:goto 1716 

1723 return 
1724 ' 
1725 ' 
1728 cIs:locate 5 
1727 input "Enter the part name "ipnames 
1728 print 
1729 print pnameS 
1730 print 
1731 Input "Is this correct part name (y/n) ";ans$ 
1732 if ans$ = "y" then goto 1737 
1733 locate 5 
1734 input "Enter the part name again ";pnameS 
1735 print:print pnameS:print 
1736 goto 1731 
1737 els:locate 5 
1738 input "Enter the part number ";pnum$ 
1739 print 

FIGURE 49. (Continued) 
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1740 print pnum$ 
1741 print 
1742 Input "Is this correct part number (y/n) ":ans$ 
1743 If ans$ = "y" then goto 1748 
1744 locate 5 
1745 Input "Enter the part number again ";pnum$ 
1748 print:print pnum$:print 
1747 goto 1742 
1748 print 
1749 print "Press any key to continue" 
1750 a$=1nkey$:1f a$="" then 1750 

1970 ' 
1980 ' 
2010 cIs:locate 5 
2020 print spaceis;"»**** Basic Shape »****" 
2030 print 
2040 print "1. Rotational without deviation" 
2050 print "2. Rotational with deviation" 
2060 print "3. Non-Rotational" 
2070 print 
2080 Input "Choose basic shape of component"; choice 
2090 If choice = 1 then gosub 2142:goto 2131 
2100 if choice = 2 then gosub 2210:goto 2131 
2110 if choice = 3 then gosub 2271 : goto 2131 
2120 locate 11:input "Incorrect choice, enter the choice again"; choice 
2130 goto 2090 
2131 return 
2140 ' 
2141 ' 
2142 gosub 2320 
2150 gosub 2440 
2160 gosub 3090 

2170 gosub 3740 
2180 gosub 3970 
2190 gosub 4250 
2191 gosub 9170 
2200 return 

2201 ' 

2202 ' 

2210 gosub 5130 
2220 gosub 5240 
2230 gosub 5640 
2240 gosub 6040 
2250 gosub 6280 
2260 gosub 4250 
2261 gosub 9170 
2262 return 

FIGURE 49. (Continued) 
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2283 ' 
2264 ' 
2271 gosub 6730 
2272 on d1g1-5 gosub 6840,8310,8720 
2273 gosub 7190 
2274 gosub 7610 
2275 gosub 7850 

2276 gosub 4250 
2277 gosub 9170 
2278 return 
2280 ' 
2290 ' Digit 1 of Rotational without deviation 
2300 ' 
2310 ' 
2320 cIs:locate 5 
2330 print spacel$:"***«* Rotational without deviation *****" 
2340 print 
2350 Input "Enter L (Largest Dimension) and D (Largest Diameter); L,D";L,D 
2360 If L/D .5 then digl = 0 : goto 2390 
2370 If L/D >= 3 then digl = 2:goto 2390 
2380 d1g1= 1 

2390 return 
2400 ' 
2410 ' Digit 2 of Rotational without deviation 
2420 ' 
2430 ' 
2440 cIs:locate 5 
2450 print spacelS:"*«**» Rotational without deviation «»***" 
2460 print 
2470 print spacelS;" 2nd Digit: External shape, external shape elements " 
2480 print 
2490 print spacBl$:"***** External shape **»**" 

2500 print 
2510 print "1. Smooth" 
2520 print "2. Stepped to one end" 
2530 print "3. Stepped to both ends" 

2540 print "4. Functional Taper" 
2550 print "5. Operating Thread" 
2560 print "6. Others ( > 10 functional diameters)" 
2570 print 
2580 input "Enter the choice"; choice 
2590 if choice = 1 then dig2=0:goto 2670 
2600 if choice = 2 then gosub 2720:goto 2670 
2610 if choice = 3 then gosub 2820:goto 2670 

2620 if choice = 4 then dig2»7:goto 2670 
2630 if choice = 5 then dlg2=8:goto 2670 
2640 if choice = 8 then d1g2=9:goto 2670 

FIGURE 49. (Continued) 
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26S0 locate 18: Input "Incorrect choice, enter the choice again"-.choice 
2660 goto 2590 
2670 return 
2680 ' 

2690 ' 
2700 ' 
2710 ' 
2720 gosub 2920 

2730 if choice = 1 then cJ1g2=1-.goto 2770 
2740 If choice = 2 then d1g2=2:goto 2770 
2750 If choice = 3 then d1g2=3:goto 2770 

2760 locate 15;Input "Incorrect choice, enter the choice again"; choice:goto 2730 
2770 return 
2780 ' 
2790 ' 

2800 ' 

2810 ' 

2820 gosub 2920 
2830 if choice = 1 then d1g2=4:goto 2870 
2840 if choice = 2 then d1g2=5:goto 2870 

2850 If choice = 3 then d1g2=6:goto 2870 

2860 locate 15:Input "Incorrect choice, enter the choice again"; choice;goto 2830 
2870 return 
2880 ' 
2890 ' Shape elements 
2900 ' 
2910 ' 
2920 c1s;locate 5 
2930 print space1$;"***** Rotational without deviation «****" 
2940 print 
2950 print space1$;" 2nd dig: External shape, external shape elements " 
2960 print 
2970 print space1$;"*»**« Shape elements ***»*" 
2980 print 
2990 print "1. No shape elements" 
3000 print "2. With screwthread" 
3010 print "3. With functional groove" 
3020 print 
3030 input "Enter the choice"; choice 
3040 return 
3050 ' 

30SO ' Digit 3 of Rotational without deviation 
3070 ' 
3080 ' 
3090 c1S ; locate 5 
3100 print spacelS;"**«*» Rotational without deviation »**»*" 
3110 print 
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3120 print spacel$:" 3rd Digit: Internal shape, internal shape element " 
3130 print 
3140 print spaceis;"«**«* Internal shape ***»*" 
3150 print 
3160 print "1. Without through bore, blind hole" 
3170 print "2. Stepped to one end" 
3180 print "3. Stepped to both ends" 
3190 print "4. Functional taper" 

3200 print "S. Operating thread" 
3210 print "8. Others ( > 10 functional diameters )" 
3220 print 
3230 Input "Enter the choice"; choice 
.3240 if choice = 1 then d1g3=0:goto 3320 
3250 if choice = 2 then gosub 3370:goto 3320 
3260 if choice = 3 then gosub 3370:goto 3320 
3270 if choice = 4 then d1g3=7:goto 3320 
3280 if choice = 5 then dig3=8: goto 3320 
3290 if choice = 6 then dig3=9:goto 3320 
3300 locate 18:input "Incorrect choice, enter the choice again";choice 
3310 goto 3240 
3320 return 
3330 ' 
3340 ' 
3350 ' 
3360 ' 
3370 gosub 3530 
3380 if choice = 1 then dig3=1:goto 3420 
3390 if choice = 2 then d1g3=2:goto 3420 
3400 If choice = 3 then d1g3=3:goto 3420 

3410 locate 15:input "Incorrect choice, enter the choice aga in":cho i ce: goto 3380 
3420 return 
3430 ' 

3440 ' 
3450 ' 
3460 ' 
3470 gosub 3530 
3480 if choice = 1 then d1g3=4:goto 3520 
3490 if choice = 2 then d1g3=5:goto 3520 
3500 if choice = 3 then d1g3=8;goto 3520 

3510 locate 15:input "Incorrect choice, enter the choice aga i n";cho i ce : goto 3480 
3520 return 
3530 ' 
3540 ' 
3550 ' 
3560 ' 
3570 cIs:locate 5 
3580 print spacelS;"*«*** Rotational without deviation *****" 
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3590 print 

3600 print spaceis;" 3rd Digit: Internal shape,external shape elements " 
3610 print 
3620 print space1$;"*«««» Internal shape elements «****" 
3630 print 
3640 print "1. No shape elements" 
3650 print "2. With screwthread" 
3660 print "3. With functional groove" 
3670 print 

3680 input "Enter the choice"; choice 
3690 return 
3700 ' 
3710 ' Digit 4 of Rotational without deviation 
3720 ' 
3730 ' 
3740 c1s:locate 5 
3750 print spacelS:"*«*** Rotational without deviation *»***" 
3760 print 
3770 print spacelS;" 4th Digit: Plane Surface Machining " 
3780 print 

3790 print "1. No surface machining" 
3800 print "2. External plane surface and/or surface curved in one direction 
3810 print "3. External plane surfaces related to one another by graduation" 

print " around a circle" 
3820 print "4. External groove and/or slot" 
3830 print "5. External spline and/or slot" 
3840 print "6. External plane surface and/or slot and/or groove,spline" 
3850 print "7. Internal plane surface and/or groove" 
3860 print "8. Internal spline and/or polygon" 
3870 print "9. External and internal splines and/or slot and/or groove" 
3880 print "10. others" 
3890 print 
3900 Input "Enter the choice"; choice 
3910 dig4=choice-1 

3920 return 
3930 ' 
3940 / 

3950 ' 
3960 ' 
3970 cIs:locate 5 
3980 print space1$;"***** Rotational without deviation «**»*" 
3990 print 
4000 print spacelSi" 5th Digit: Auxiliary Hole(s) and Gear Teeth " 
4010 print 
4020 input "Is the component with gear teeth (y/n) ";ans$ 
4030 if ansS = "y" then goto 4160 
4040 if ans$ = "n" then goto 4070 
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4050 locate 9;Input "Incorrect answer, enter the answer again (y/n) ";ans$ 
4060 goto 4030 
4070 print:print "1. No auxiliary hole(s)" 
4080 print "2. Axial hole(s) not related by a drilling pattern" 
4090 print "3. Axial holes related by a drilling pattern" 
4100 print "4. Radial hole(s) not related by a drilling pattern" 
4110 print "5. Holes axial and/or radial and/or in other directions, not related" 
4120 print 
4130 input "Enter the choice":choice 
4140 dlg4=cho1cB-1 
4150 return 
4160 print 
4161 print "1. Holes axial, and/or radial and/1n other directions related by " 
4162 print "drill pattern" 
4170 print "2. Spur gear teeth" 
4180 print "3. Bevel gear teeth" 
4190 print "4. Other gear teeth" 
4200 print "5. Other" 
4210 print 
4220 input "Enter the choice"; choice 
4230 dig4=choice-1 
4240 return 
4250 ' 
4260 ' Supplementary code 
4270 ' 
4280 ' 
4290 cIs:locate 5 
4300 print spacelS;"***** Supplementary Code *«***" 
4310 print 
4320 print spacelS;" 1st Digit; Diameter D or Edge length A " 
4330 print 
4340 Input "Enter the diameter 0 or Edge length A ":d1medge 
4350 if dimedge .8 then d1g6=0:goto 4460 
4360 if dimedge 2 then dig6=1:goto 4460 
4370 if dimedge 4 then dig6=2:goto 4460 
4380 If dimedge 6.5 then d1g6=3:goto 4460 
4390 If dimedge 10 then d196=4;goto 4460 
4400 if dimedge 16 then d1g6=5;goto 4460 
4410 if dimedge 25 then dlg6=6;goto 4460 
4420 If dimedge 40 then d1g6=7;goto 4460 
4430 if dimedge 80 then dig6=8;goto 4460 
4440 d1g6=9 

4450 goto 4460 
4460 ' 
4470 ' 
4480 ' 
4490 ' 
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4500 
4510 
4520 
4530 
4540 
4550 
4560 
4570 
4580 
4590 
4800 
4610 
4620 
4630 
4640 
4650 
4660 
4670 
4680 
4690 
4700 
4710 
4720 
4730 
4740 
4750 
4760 
4770 
4780 
4790 
4800 
4810 
4820 
4830 
4840 
4850 
4860 
4870 
4880 
4890 
4900 
4910 
4920 
4930 
4940 
4950 
4960 

Supplementary Code *****" 

cIs:locate 5 
print spacel$:"***** 

print 
print spacelS;" 2nd Digit; Material " 
print 
print "1. Cast Iron " 
print "2. Modular graphitic cast Iron and malleable cast Iron " 
print "3. Stee$26.5 tonf/ln square, Not heat treated " 
print "4. Steel > 26.5 tonf/ln square. Heat treatable low carbon and case" 
print " hardening steel, not heat treated" 
print "5. Steels 2 and 3, Heat treated " 
print "6. Alloy steel (Not heat treated) " 
print "7. Alloy steel (Heat treated) " 
print "8. Non-ferrous metal " 
print "9. Light Alloy " 
print "10. Other material " 
print 
Input "Enter the choice ";choice 
dlg7=cholce-1 

Supplementary Code *****" 
els:locate 5 
print spacelS;"***** 
print 
print spacelS;" 3rd Digit: Initial Form 
print 

"1. Round Bar, clack " 
"2. Round bar, bright drawn " 
"3. Bar-triangular, square, 
"4. Tubing 
"5. Angle, LI-, T-, and similar sections 
"6. Sheet " 
"7. Plate and slabs " 
"8. Cast or forged components " 
"9. Welded assembly " 

print 
print 
print 
print 
print 
print 
print 
print 
print 
print 
print 
input 

hexagonal, other 

'10. Pre-machined components 

'Enter the choice ";choice 

cIs:locate 5 
print space1$;"««*«* 

print 

Supplementary Code «»»»*" 
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4970 print spacBl$;" 4th Digit: Accuracy in coding digit " 
4980 print 
5100 input "Enter the tolerance tolerance 
5101 print 
5102 input "Enter the weight ";weight 
5120 return 
5130 ' 
5140 ' 

5150 ' 
5160 ' 
5170 cIs:locate 5 
5180 print " ";"*«*«« Rotational with deviation ««***" 
5190 print 

5200 input "Enter L(Largest Dimension and D(Largest Diameter); L,D";L,D 
5210 if L/D 2 then d1g1=3: goto 5230 
5220 dlg1=4 

5230 return 
5240 ' 
5250 ' 
5260 ' 

5270 ' 
5280 els;locate 5 
5290 print space1$;"***»« Rotational with deviation **»«*" 
5300 print 
5310 print spacelS;" 2nd Digit; Overall shape " 
5320 print 
5330 input "Is the component around one axis (y/n) ":ans$ 
5340 if ansS = "y" then goto 5420 
5350 input "The component must be with segments (y/n) ";ans$ 
5360 if ans$ = "n" then goto 5540 
5370 input "Do segments occur after rotational machining (y/n) ";ans$ 
5380 if ans$ = "y" then dig2=4;goto 5631 

5390 if ans$ = "n" then dig2=5;goto 5631 
5400 dig2=9 

5410 goto 5631 
5420 print 
5430 print "1. Hexagonal bar " 
5440 print "2. Square or other regular polygonal section " 
5450 print "3. Symmetrical cross-section producing no unbalance " 
5460 print "4. Cross-sections other than 1 to 3 " 
5470 print 
5480 input "Enter the choice ";choice 
5490 if choice 4 then goto 5520 
5500 locate 18:input "Incorrect choice, enter the choice again ";choice 
5510 goto 5490 
5520 d1g2=choice-l 
5530 goto 5631 
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5540 print 
5550 print "1. Rotational components with curved axis " 

5560 print "2. Rotational components with two or more parallel axes " 
5570 print "3. Rotational components with intersecting axes " 
5580 print 
5590 input "Enter the choice choice 
5600 if choice 3 then goto 5630 

5610 locate 17;input "Incorrect choice, enter the choice again ";choice 
5620 goto 5600 
5630 dig2=cho1ce+S 
5631 return 
5640 ' 
5650 ' 
5660 ' 
5670 ' 
5680 c1S : locate 5 

5690 print space1$;"****« Rotational with deviation ****»" 
5700 print 
5710 print spacelS:" 3rd Digit: Rotational machining " 
5720 print 

5730 print "1. No rotational machining" 
5740 print "2. External shape" 
5750 print "3. Internal shape" 
5760 print "4. External and Internal shape" 
5770 print "S. External shape elements" 
5780 print "6. Other .shape elements" 
5790 print 
5800 Input "Enter the choice ";choice 
5810 if choice = 1 then d1g3=0;goto 6031 

5820 if choice = 2 then goto 5890 
5830 if choice = 3 then goto 5920 
5840 if choice = 4 then goto 6010 

5850 If choice = 5 then dig3=8;goto 6031 
5880 if choice = 6 then dig3=9:goto 6031 
5870 locate 16:input "Incorrect choice, enter the choice again "; choice 
5880 goto 5810 
5890 input "Is the external shape machined (y/nl ";ans$ 
5900 If ans$ = "y" then dig3=1:goto 6031 
5910 if ans$ = "n" than dig3=2:goto 6031 
5920 print 
5930 print "1. Smooth" 
5940 print "2. Stepped towards to one or both ends (Multiple Increases)" 
5950 print "3. With screwthreads" 
5980 print 
5970 input "Enter the choice "; choice 
5980 if choice 3 then d1g3=choice+2: goto 6031 
5990 locate 22:input "Incorrect choice, enter the choice again ";choice 
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6000 goto 5980 

6010 Input "Is the external and Internal shape machined ";ans$ 
6020 if ans$ = "y" then dig3-6:goto 6031 
6030 if ans$ = "n" then dig3=7:goto 6031 
6031 return 
6040 ' 
6050 ' 
6060 ' 

6070 ' 
6080 cIs:locate 5 

6090 print spacelS:"****« Rotational with deviation **»**" 
6100 print 

6110 print spacelS;" 4th Digit: Plane surface machining " 
6120 print 
8130 print "1. No surface machining " 
6140 print "2. External plane surface and/or surface curved in one direction 
6150 print "3. External plane surfaces related to one another" 
6160 print "4. External groove and/or slot" 
8170 print "5. External spline and/or polygon" 
8180 print "8. External plane surface and/or slot and/or groove, spline" o

 
CD CD 

print "7. Internal plane surface and/or groove" 
6200 print "8. Internal spline and/or polygon" 
8210 print "9. External and internal spline and/or slot and/or groove" 
6220 print "10. Other" 
6230 print 
6240 input "Enter the choice choice 
6250 If choice 10 then dig4=choice-1:goto 6271 
6260 locate 20:input "Incorrect choice, enter the choice again choice 
6270 goto 6250 
8271 return 
6280 ' 
6290 ' 

6300 ' 
6310 ' 
6320 c1S : locate 5 
6330 print spacelS;"***** Rotational with deviation *»»*«" 
6340 print 
6350 print spacelS:" 5th Digit: Auxiliary hole(s), gear teeth, forming " 
6300 print 
6370 print "1. No auxiliary holes, gear teeth and forming" 
6380 print "2. Auxiliary holes, no forming, no gear teeth" 
6390 print "3. Forming, no gear teeth" 
6400 print "4. Gear teeth, no auxiliary hole(s)" 
6410 print "5. Gear teeth, with auxiliary hole(s)" 

8420 print "8. Other" 
6430 print 
8440 input "Enter the choice choice 
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6450 if choice = 1 then dig5=0:goto 6721 
6460 if choice = 2 then goto 6530 
6470 if choice = 3 then goto 6680 
6480 if choice = 4 then d1gS=7:goto 6721 
6490 if choice = S then d1gS=8:goto 6721 
6500 if choice = 6 then d1g5=9:goto 6721 

6510 locate 17:input "Incorrect choice, enter the choice again choice 
6520 goto 6450 
6530 input "Are the hole(s) related by a drilling pattern (y/n)":ans$ 
6540 If ans$ : "y" then goto 8630 
6550 if ans$ = "n" then goto 6580 
6560 locate 19:input "Incorrect answer, answer again ";ans$ 
6570 goto 6540 
6580 input "Are they axial holes (y/n) ";ans$ 
6590 if ans$ - "y" then dig5=3:goto 6721 
6800 if ans$ = "n" then dig5=4:goto 6721 
6810 locate 21:input "Incorrect answer, answer again (y/n) ";ans$ 
6620 goto 6590 
6630 input "Are they axial holes (y/n) ";ans$ 
6840 if ans$ = " y "  then dig5=1:goto 6721 
6650 if ans$ - "n" then digS=2:goto 6721 
6860 locate 21 : input "Incorrect answer, answer again (y/n) ";ans$ 
6870 goto 6840 
6880 input "Is the component formed with auxiliary holes (y/n)";ans$ 
6890 if ans$ = "y" then dig5=8:goto 6721 
6700 if ans$ = "n" then dig5=5:goto 6721 
6710 locate 21 : input "Incorrect answer, answer again (y/n)";ans$ 
6720 goto 6890 
6721 return 
6730 ' 
6740 ' 
6750 ' 

6760 ' 
6770 cls;locate S 
6780 print " ";"*»»»« Non-Rotational **»»«" 

6790 print 
6800 input "Enter three Dimensions A,B,C (A>B>C>) ":A,B,C 
6810 if A/B 3 AND A/C >= 4 then dig1=6:goto 8831 
6820 if A/B > 3 then dig1=7:goto 6831 
6830 dig1=8 
6831 return 
6832 ' 
6833 ' 
6834 ' 

6835 ' 
6840 Cls:locate 5 
6850 print spaceis:"***»* Non-Rotational »««*«" 
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6860 print 
6870 print spaceis;" 2nd Digit: Overall shape " 
8880 print 
6890 input "Is the overall shape plane or flat or other (p/f/o) ";ans$ 
6900 if ans$ = "p" then goto 6950 

6910 if ans$ : "f" then print:print "The overall shape must be flat ": goto 7080 
6920 if ans$ = "o" then d1g2=9:goto 7181 

6930 locate 11:input "Incorrect answer, enter the answer again ":ans$ 
6940 goto 6900 
6950 print 

6960 print "The overall shape Is plane" 
6970 print 

6980 print "1. Rectangular" 
6990 print "2. Rectangular, with one deviation (right angle or triangular)' 
7000 print "3. Rectangular, with angular deviations" 
7010 print "4. Rectangular with circular deviation" 
7020 print "5. Any flat shape other than 1 to 4" 
7030 print 

7040 input "Enter the choice ";choice 
7050 if choice 5 then d1g2=cho1ce-1 : goto 7181 

7060 locate 19:input "Incorrect choice, enter the choice again "; choice 
7070 goto 7050 
7080 print 
7090 print "1. Rectangular or right angled with small deviations due to" 
7100 print " casting, welding, forming" 
7110 print "2. Round or of any shape other than 1" 
7120 print "3. Regularly arched or dished" 
7130 print "4. Irregularly arched or dished" 
7140 print 
7150 input "Enter the choice "; choice:goto 7181 
7160 If choice 4 then dig2=cho1ce+4 
7170 locate 19:input "Incorrect choice, enter the choice again ";choice 
7180 goto 7160 
7181 return 
7190 ' 
7200 ' 
7210 ' 
7220 ' 
7230 els:locate 5 
7240 print spaceis;"***** Non-Rotational *»»*»" 
7250 print 
7260 print " 3rd Digit: Principal bore, rotational surface machining " 
7270 print 
7280 print "1. No rotational machining or bore(s)" 
7290 print "2. One principal bore" 
7300 print "3. Two principal bores, parallel" 
7310 print "4. Several principal bores" 
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7320 
7330 
7340 
7350 
7380 

7370 
7380 
7390 

7400 

7410 
7420 
7430 

7440 

7450 
7460 

7470 

7480 

7490 
7500 
7510 

7520 
7530 
7540 
7550 
7560 
7570 
7580 

7590 
7600 
7601 
7610 
7620 
7630 
7640 
7650 
7660 
7670 
7680 
7690 
7700 
7710 
7720 
7730 
7740 
7750 
7760 
7770 

Smooth" 
Stepped to one or both ends" 
With shape elements" 

print "5. Machined angular surfaces, angular grooves" 
print "6. S+prlnclpal bore(s)" 
print "7. Others" 
print 
Input "Enter the choice choice 
If choice = 1 then d1g3-0:goto 7601 
If choice = 2 then goto 7400 
If choice = 3 then d1g3=4:goto 7601 

If choice = 4 then goto 7550 
If choice = 5 then d1g3=7;goto 7601 
If choice = 6 then d1g3=8:goto 7601 
if choice = 7 then dtg3=9:goto 7601 

locate 17:Input "Incorrect choice, enter the choice again"; choice 
goto 7370 
print 
print "1. 
print "2. 
print "3. 
print 
input "Enter the choice choice 
if choice 3 then di g3=cho1ce : goto 7601 
locate 23:input "Incorrect choice, enter the choice again ";choice 
goto 7520 
print 
input "Is it parallel (y/n) ";ans$ 
if ans$ = "y" then d1g3=5:goto 7601 
if ans$ = "n" then dig3=6:goto 7601 

locate 19;input "Incorrect choice, enter the answer again (y/n) ";ans$ 
goto 7570 
return 

cIs:locate 5 
print space1$:"«**** Non-Rotational *»***" 

print 
print " 4th Digit: Plane surface machining 

print 

print 

print 
print 
print 

print 

print 
print 

print 

1. No surface machining" 
2. Functional chamfers (e.g. welding prep.)" 
3. One plane surface" 
4. stepped plana surfaces" 
5. Stepped plane surfaces at right angles, inclined and/or opposite" 
0. Groove and/or slot" 

7-. Groove and/or slot and 5" 
8. Curved surface" 
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7780 print "9. Guide surfaces" 
7790 print "10. Others" 
7800 print 
7810 input "Enter the choice ";choice 
7820 if choice 10 then dlg4=choice-1:goto 7841 
7830 locate 20;input "Incorrect choice, enter the choice again choice 
7840 goto 7820 
7841 return 
7850 ' 
78B0 ' 
7870 ' 
7880 ' 
7890 cIs:locate 5 
7900 print space1$;"***** Non-Rotational «»*«*" 
7910 print 
7920 print spacelS;" 5th Digit: Auxiliary hole(s), forming, gear teeth " 
7930 print 
7940 print "1. No auxiliary holes, gear teeth and forming" 
7950 print "2. Auxiliary holes, no forming, no gear teeth" 
7960 print "3. Forming, no gear teeth" 

7970 print "4. Gear teeth, no auxiliary hole(s)" 
7980 print "5. Gear teeth, with auxiliary hole(s)" 
7990 print "8. Other" 
8000 print 

8010 input "Enter the choice ";choice 
8020 if choice = 1 then dig5=0:goto 8300 
8030 if choice = 2 then goto 8100 
8040 if choice = 3 then goto 6680 
8050 if choice = 4 then dig5=7: goto 8300 
8060 if choice = 5 then digS=8:goto 8300 
8070 if choice = 8 then d1gS-9:goto 8300 

8080 locate 17;Input "Incorrect choice, enter the choice again "; choice 
8090 goto 8020 
8100 input "Are the auxiliary hole(s) related by a drilling pattern (y/n) ";ans$ 
8110 if ans$ = "y" then goto 8200 
8120 if ans$ = "n" then goto 8150 
8130 locate 19:input "Incorrect answer, enter the answer again ";ans$ 
8140 goto 8110 
8150 input "Are the holes drilled in one direction (y/n) ":ans$ 
8180 if ans$ = "y" then digS=3:goto 8300 
8170 if ans$ = "n" then digS=4:goto 8300 

8180 locate 21:input "Incorrect answer, enter the answer again (y/n) ":ans$ 
8190 goto 8160 
8200 input "Are the holes drilled in one direction (y/n) ? ";ans$ 
8210 if ans$ = "y" then dlg5=1:goto 8300 
8220 if ans$ = "n" then dig5=2;goto 8300 
8230 locate 21:input "Incorrect answer, enter the answer again (y/n) ";ans$ 
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8240 goto 8210 
8250 Input "Is the component formed with auxiliary holes (y/n) "; ans: 
8260 If ansS = "y" then d1g5=6:goto 8300 
8270 If ans$ = "n" then d1g5=5:goto 8300 

8280 locate 21:Input "Incorrect answer, enter the answer again (y/n) ":ans$ 
8290 goto 8260 
8300 return 
8310 ' 
8320 ' 
8321 ' 
8330 ' 
.8340 cIs:locate 5 
8350 print spacelî;"***»* Non-Rotational **»**" 
8360 print 
8370 print space1$;" 2nd Digit: Overall shape " 
8380 print 
8390 input "Is the shape axis straight (y/n) ';ansS 
8400 If ansS = "y" then goto 8440 
8410 If ans$ = "n" then goto 8620 
8420 locate 10;Input "Incorrect answer, enter the answer again ";ans$ 

8430 goto 8400 
8440 print 
8450 input "Is the cross-section uniform or curved (u/c) ";ans$ 
8460 if ansS = "u" then goto 8500 

8470 gosub 8530 
8480 d1g2=cho1ce+2 
8490 goto 8520 
8500 gosub 8530 
8510 d1g2=choice-1 

8520 return 
8521 ' 
8522 ' 
8523 ' 
8524 ' 
8530 print 
8540 print "1. Rectangular" 
8550 print "2. Rectangular with one deviation" 
8560 print "3. Any cross-section other than 1 and 2" 
8570 print 
8580 input "Enter the choice choice 
8590 if choice 3 then return 
8600 locate 17:Input "Incorrect choice, enter the choice again choice 
8610 goto 8590 
8611 '  

8612 ' 

8613 ' 
8614 ' 
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8820 print 
8630 print "1. Rectangular, angular and other cross-sections" 
8640 print "2. Formed component" 
8850 print "3. Formed component with deviations in the main axis" 
8680 print "4. others" 
8670 print 
8680 input "Enter the choice "; choice 
8690 if choice 4 then d1g2=cho1ce+5: goto 8S20 

8700 locate 18:input "Incorrect choice, enter the choice again choice 
8710 goto 8890 
8720 ' 
8730 ' 
8740 ' 
8750 ' 
8760 cIs:locate 5 
8770 print space1$:"**«** Non-Rotational *»»»*" 
8780 print 
8790 print spacelS;" 2nd Digit: Overall shape " 
8800 print 
8810 input "Is the overall shape block-like or box-like (block/box) "; ans* 
8820 if ans$ = "block" then goto 8880 
8830 if ans$ = "box" then goto 8990 
8840 locate 10: input "Incorrect answer, answer again (block/box) ";ans$ 
8850 goto 8820 
8860 print 
8870 print "1. 
8880 print "2. 
8890 print "3. 
8900 print "4. 
8910 print "5. 
8920 print " 
8930 print "6. 

8940 print 
8950 input "Enter the choice choice 
8960 if choice 6 then d1g2=choice-1 : goto 9161 
8970 locate 20:input "Incorrect choice, enter the choice again "; choice 
8980 goto 8960 
8990 print 
9000 input "Is the component split (y/n) ":ans$ 
9010 if ans$ = "y" then goto 9050 
9020 if ans$ = "n" then goto 9110 
9030 locate 13:input "Incorrect answer, enter the answer again (y/n) ":ans$ 
9040 goto 9010 
9050 print 
9060 print "Is the component approximate"; 
9081 input " or compounded of rectangular prisms (y/n) ";ans$ 
9070 if ansS : "y" then d1g2 =6 :goto 9161 

FIGURE 49. (Continued) 

Rectangular prism " 
Rectangular with deviations (right angle or triangular)' 
Compounded of rectangular prisms" 
Components with a mounting or locating surface and principal bore" 
Components with a mounting or locating surface, principal" 
bore with dividing surface" 
Others" 
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9080 If ans$ = "n" then d1g2=7:goto 9181 
9090 locate 16:Input "Incorrect answer, enter the answer again (y/n) ";ans$ 
9100 goto 9070 

9110 print 
9120 print "Is the component approximate"; 
9121 Input " or compounded of rectangular prisms (y/n) ":ans$ 
9130 if ans$ = "y" then d1g2=8:goto 9181 
9140 <f ans$ = "n" then d1g2=9:goto 9181 
9150 locate 16:input "Incorrect answer, enter the answer again (y/n) ";ans$ 

9160 goto 9130 
9161 return 
9170 ' 
9180 ' 
9190 ' 
9200 ' 
9210 cIs;locate 5 
9220 print "Part Name is ":pname$ 
9230 print "Part Number is ";pnum$ 
9240 print 
9250 print "Opitz code is ";dig1;d1g2;dig3;dig4;d1g5;dig6;d1g7;d1g8;dig9 

9320 return 

FIGURE 49. (Continued) 
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100 ' 

110 ' 

120 ' 

130 ' 
150 ' 
180 ' 

170 ' 
180 ' 

190 ' 
191 ' 
192 ' 
193 ' 
194 ' 
195 ' 
196 ' 
197 ' 
198 ' 
203 
220 ' 

221 '  

222 ' 

223 ' 

224 ' 
226 
227 

228 

229 

230 
231 
232 
233 
234 

235 
236 
1300 
1310 
1320 
1330 
1331 
1340 
1350 
1360 
1361 
1362 

1363 

Computer Aided Coding and Classification 

Opitz Coding Method 
Rank Order Cluster Analysis (ROCA) 
Cluster Analysis with Similarity Coefficients (CASC) 

Definitions of Variables 

tnp: Total Number of Parts in the data file 
tp: Total Number of Process of a part 
id; Total number of machines 

dim pname$(100),pnum$(100),pmmat(100,50),mach$(50) 

Opitz 

els:locate 10,40 
print "1=";"R0CA" 
locate 11,40 
print "2=";"CASC" 
locate 12,40 
print "3=":"Exit" 

locate 14,32:input "Enter the number ";method 
if method = 1 then gosub S400:gosub 1300 ;' ROCA 
if method = 2 then gosub 5400:gosub 2750 :' CASA 
if method = 3 then end : ' End of program 
locate 14,32:input"Enter the number again";method:goto 233 

Initialization 

dim rlist(tnp,2),clist(ld,2),ylist(tnp),nlist(tnp),tlist(tnp,id) 
dim ytlIst(tnp),nt1ist(tnp),rtemp(tnp),ctemp(id),tmach$(id) 
dim tpnum$(tnp) 
for 1 = 1. to 56 

If (i > 27 and 1 33) then 1384 
ii = i 

if I >32 then 11 = i-6 
mach$(11) = chr$(i +84) 

FIGURE 50. The program listing of the Opitz coding method with the 
CASA and ROCA classification methods 
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1384 next 
1491 Itérâtion=0 
1492 gosub 5080 print the initial p-m matrix 
1500 crlt=0 
1510 for I = 1 to tnp 
1520 rHst(I,1) = I 

1530 next 
1540 for j = 1 to id 

1550 Clist(j,1) = j 
1580 next 
1570 itérâtion=1tBration+1 
1580 gosub 2590 
1581 ' 
1590 '* * 
1800 ' I  Rowwise sorting ' 
1610 '« * 

1811 '  

1820 for j = id to 1 step -1 
1830 y=0:z=0 

1840 for I = tnp to 1 step -1 

1850 if pmmatd.j) = 1 then y=y+1:y1ist(y)=l:goto 1870 
1880 z=z+1:n1ist(z)=I 

1870 next 
1880 for I = 1 to tnp:r1i St(1,2)=0 : next : I = 1 
1890 for 1 = y to 1 Step -1 
1700 if I > tnp then goto 1780 
1710 if rlist(I,1) = ylist(l) than 1720 else 1740 
1720 rlist(I.2)=1 
1730 goto 1780 
1740 1 = 1 + 1 

1750 goto 1700 
1780 1=1;next 
1770 y=0:z=0 

1780 for I = 1 to tnp 
1790 if rlist(I,2) = 1 then 1800 else 1830 
1800 rlistd ,2)=0;y=y+1 
1810 ytl ist(y)=rl istd, 1 ) 
1820 goto 1850 
1830 z=z+1 
1840 ntHst(z)=rl istd, 1 ) 

1850 next 
1860 for 1= 1 to y : rlist(1,1)=ytlist(1): next 
1870 for l=y+1 to tnp: rlist(1,1)=ntlist(1-y): next 
1880 for 1 = 1 to tnp-1 : print rlistd,1): : next: print rlist(tnp,1) 

1890 next 
1900 for i = 1 to tnp: tpnum$(i) = next 
1910 for i = 1 to tnp 

FIGURE 50. (Continued) 
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1920 
1930 
1940 
1950 
1960 
1970 
1980 
1990 
2000 
2010 
2020 
2030 
2040 
2080 

next 
next 
gosub 2590 

next 
next 
for i = 1 to tnp: pnum$(1) = next 
for 1 s 1 to tnp 

pnum$( I ) = tpnutn$( 1 ) 

for j = 1 to Id 

for J = 1 to Id 

tpnums(I) = pnum$(i ndex) 
Index = rHst( 1,1 ) 

ptnmati 1, j ) = tl 1st( i, j ) 

tHst(1,j) = pmmat( Index, j ) 

2081 ' 

2070 '* 
2080 ' I Colummwlse sorting 
2090 '* 
2091 ' 
2100 for I = 1 to tnp:rlist(I,1)=I:next 
2110 for j = 1 to id:cl1st(j,1)=j:next 
2120 for I = tnp to 1 step -1 
2130 y=0;z=0 

2140 for j = id to 1 step -1 
2150 if pnmnatC I. j ) = 1 then y=y+1 : yH st ( y ) = j : goto 2170 
2180 z=z+1:nlist(z)=j 

2170 next 
2180 for j = 1 to id:clist(j,2)=0:next:j=1 
2190 for 1 = y to 1 step -1 
2200 if j > id then 2260 
2210 if c11st(J,1)=y1istd) then 2220 else 2240 
2220 Clist(j.2) = 1 

2230 goto 2260 
2240 j=j+1 

2250 goto 2200 
2260 j=1 

2261 next 
2270 y=0:z=0 

2280 for j : 1 to id 
2290 if c1ist(j,2) = 1 then 2300 else 2330 
2300 clist(j,2)=0:y=y+1 
2310 ytlist(y)=clist(j, 1 ) . 

2320 goto 2350 
2330 z=z+1 

2340 nt1ist(z)=cl1st(j,1) 
2350 next 
2360 for 1 = 1 to y:cl istd,1)=ytllst(1):next 

FIGURE 50. (Continued) 
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2370 for 1 =y+l to 1d:cHst( 1,1 )=ntl 1st( 1 -y):next 
2380 for 1 = 1 to 1d-1;pr1nt clistd.l); : next:print cl1st( 
2390 next 
2431 for j = 1 to Id: tmach$(j) = next 

2440 for j = 1 to Id 

2450 index = cHst(j, 1) 

2460 tmach$(J) = mach$(i ndex) 
2470 for i = 1 to tnp 

2480 tlist(i,J) = ptnmat( i, index) 
2490 next 
2500 next 
2501 for i=1 to tnp 

2502 for j=1 to id 

2503 If tlist(i,j) = pmmat(i,j) then goto 2505 
2504 crit = crit+1 

2505 next 
2506 next 
2497 if crit = 0 then 2581 
2510 for j = 1 to Id: mach$(j) = next 

2520 for j = 1 to id 

2530 mach$(j) = tmachS(j) 

2540 for i = 1 to tnp 

2550 pmmatC i,j) = tlist(i,j) 

2551 next 

2552 next 
2560 gosub 2590 

2580 goto 1500 
2581 return 
2590 ' 
2600 ' 
2610 ' 

2620 Iprint "Iteration ";iteration:Iprint: Iprint 

2621 1 print using " ";" list": 

2622 for j = 1 to id-1:lprint using "yf##" :cl ist( j , 1 ) ; :next 

2623 Iprint using "###":clist(id,1) 

2630 Iprint using " "; "list part/mach " 

2640 for j = 1 to id-1:Iprint USING "a"; machS(j): : next 

2650 Iprint using ; mach$(id):Iprint 

2660 for I = 1 to tnp 

2670 Iprint using "### " ; rlistd.l); 
2671 Iprint using " "; pnum${1 ) : 

2680 for j = 1 to id-1 

2690 Iprint using ; pmniat( I, j ) : 

2700 next 
2710 Iprint using ; ptnmat(I, id) 
2720 next 
2730 Iprint;Iprint:Iprint 

FIGURE 50. (Continued) 
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2740 return 
2741 ' 
2750 '* * 

2760 ' I  Cluster Analysis with Similarity Coefficient | 
2770 '« * 
2790 dim B(tnp),C(tnp),A(tnp) 
2921 ' 
2930 '* * 

2940 'I Calculation of Similarity Coefficient Matrix | 
2950 '« « 

2951 ' 
2960 cls:locate 10,18 
2961 print "Cluster Analysis with Similarity Coefficient" 
2970 locate 11,20 

2971 print "Calculating similarity coefficient matrix" 
2980 locate 12,31 
2981 print "Please wait " 
2982 '« 
3131 ' 

3140 * 
3150 ' I  Prim Tree Data Structure | 
3160 '* « 

3161 ' 
3170 DLARGE=0 : a=0 : b=0 : c=0 

3180 If tnp 1 then ifAULT=1:end 
3190 IFAULT=0 
3200 for 1=2 to tnp 
3210 A(I)=0:B(I)=0;C(I)=0LARGE 

3220 next 
3230 j=1: 
3240 for 1=2 to tnp 
3250 MIN=OLARGE 

3260 for K=2 to tnp 
3270 if A(K) = 0 then 3280 else 3320 
3280 if j >= K then row1=j:row2=k else rowl=k:row2=j 
3281 for col = 1 to id 
3282 If pmmat(row1,col)=1 and pmmat(row2,col)=1 then a=a+1 
3283 if pmmat(rowl,co1)=1 and pmmat(row2,col)=0 then b=b+1 
3284 if pmmat(rowl,col)=0 and pmmat(row2,col)=1 then c=c+1 

3285 next 
3290 DIST=a/(a+b+c) 
3291 a=0:b=0:c=0 

3300 If DIST > C(K) then C(K)=DIST:B(K)=j 
3310 if MIN C(K) then MIN=C(K);NEX=K 

3320 next 
3330 j=NEX:A(j)=1:print "next = ";nex 

3340 next 

FIGURE 50. (Continued) 
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3380 Iprint " Results of CASC" 
3370 Iprint:Iprint:Iprint 
3371 Iprint " Prim's Tree structure" 
3380 Iprint:iprint 
3390 for 1=2 to tnp:Iprint pnumSd),1,b(1),c(1):next:Iprint:Iprint 
3391 ' 
3400 '« « 

3410 '] printing Minimal Spanning Tree | 
3420 '« * 
3421 ' 
3430 dim ROUT(tnp),HIST(tnp) 
3440 for 1= 1 to tnp: HIST(I)=0:next 
3450 for I = 2 to tnp 
3460 TEMM=B(I) 

3470 HIST(TEMM)=HIST(TEMM)+1 
3480 print TEMM.HIST(TEMM) 
3490 next 
3500 R0UT{1)=1: j=1: K=1 

3510 for I = 2 to tnp 

3520 If HIST(K) = 0 then 3530 else 3550 
3530 j=j-1:K=R0UT(j) 

3540 goto 3520 
3550 HIST(K)=HIST(K)-1 
3560 for M=2 to tnp 

3570 If K=B(M) then 3580 else 3610 
3580 Iprint K.M,C(M):j=j+1 
3590 K=M:ROUT(j)=K 

3600 B(M)=-B(M) 
3610 next 
3620 next 
3622 ' 
3630 ' 
3640 ' 
3650 ' 
3660 ' 
3670 ' 
3680 ' 
3690 ' 
3700 ' 
3710 ' 
3711 ' 
3720 dim G(tnp),H(tnp),X(20*tnp),W1(tnp),W2(tnp) 
3721 Iprint:Iprint 
3730 Iprint " Result of Single Linkage Cluster Analysis" 

3740 Iprint:Iprint 
3741 ' 

Single Linkage Cluster Analysis 

s: previous point Indicator 
t: next print indicator 

u,v: switches 
k: total number of clusters 
h: list which contains end-of-makers 

FIGURE 50. (Continued) 
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3750 '* * 

3760 'I this loop will find the Omax (Maximum distance) | 
3770 '» * 
3771 ' 
3780 for 1=2 to tnp:zz=-B(I):B(I)=zz:pr1nt B(I):next 
3790 DMAX=C(2) 
3800 for 1=3 to tnp 
3810 If DMAX C(I) then DMAX=C(I) 
3820 next 
3821 ' 
3830 '* « 

3840 ' I  Initialization | 
3850 '* « 
3851 ' 
3860 for 1= 1 to tnp 
3870 G(I)=I List G consists Initially of all points as single groups 
3880 H(I)=1 Thus, Initially, list H should have all I's 
3890 X(I)=3 Initially, t=3 for all points 
3900 next 
3910 P=0 

3920 DELTA=0.05 
3930 LEVEL =-DELTA»(1+INT(DMAX/DELTA)) 
3940 WHILE K 1 
3950 P=P+1 
3960 for I = 2 to tnp 

3981 ' 
3970 '* « 

3980 'I for point whose length is less than level | 
3990 '« « 

3991 ' 
4000 If C(I) > LEVEL then 4010 else 4280 
4010 j=B(l):C(I)=C(I)-C(I)-0.001 ' Links once used are decreased 
4020 ' to zero to prevent re-use 
4030 K=I 

4040 for M=1 to tnp 
4050 if G(M)=j then Q=M 
4060 if G(M)=K then R=M 

4070 next 
4080 if Q > R then M=R:R=Q:Q=M 
4090 S=Q 

4100 if S > tnp goto 4280 
4110 if H(S) 0 then 4120 else S=S+1:goto 4100 
4120 T=R-1 
4130 If T = 0 goto 4280 

4140 if H(T) 0 then 4150 else T=T-1:goto 4130 
4150 T=T+1:H(S)=0 

4160 R=T 

FIGURE 50. (Continued) 
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4170 
4180 
4190 
4200 

4210 
4220 
4230 
4240 
4250 

4260 

4270 
4280 
4281 

next 
If level >0.8 or level 0.5 then 4301 

if R > tnp goto 4280 
W1(R-T)=G(R):W2(R-T)=H(R) 

if H(R) 0 then 4200 else R=R+1;goto 4170 
W=S+1:U=R-T+1 

for M=T-1 to W step -1 
G(M+U)=Q(M):H(M+U)=H(M) 

next 
U=R-T 

for M=0 to U 
G(M+W)=W1(M):H(M+W)=W2(M) 

next 

4287 '* * 

4288 ' ; 
4290 '* 

/ I prints group 
t 

4291 1 print "level ="; level : 1 print 
4292 for i =1 to tnp 
4293 1 print g(I); 
4294 if h(i) = 1 then 1 print 
4295 next:1 print : 1 print 
4300 print "printing group" 
4301 '* 
4310 W=N*tnp:U=0:V=0:K=0 

4320 for 1=2 to tnp:K=K+H(I): next 

4330 if P 20 then 4340 else 4480 
4340 for 1= 1 to tnp 
4350 ' j=G(I):S=X(j+W+N) 

4380 if U=0 then 4370 else 4390 
4370 if H(I) = 1 then T=3 else if S=3 then T=1:U=1:V=1 else T=0;U=1 

4380 goto 4460 
4390 if H(I) = 1 then 4400 else 4420 
4400 if V = 0 then T=3:U=0 else T=2:U=0:V=0 

4410 goto 4460 
4420 if S=2 OR S=3 then 4430 else 4450 
4430 if V = 0 then T=1:U=1:V=1 else T=5:U=1 

4440 goto 4460 
4450 if V : 0 then T=0:U=1 else T=4 
4460 X(j+W)=T 

4470 next 
4480 LEVEL=LEVEL-DELTA 
4490 print:print;print 
4500 print "level=":LEVEL:print 
4510 for z = 1 to tnp:print B(z),C(z),G(z),H(z): next 

4530 WEND 
4540 ' gosub topprint 
4550 for 1=1 to tnp 

FIGURE 50. (Continued) 



www.manaraa.com

222 

4560 j=G(I):' gosub Sideprint 
4570 print "prIntING SIDE" 
4580 If P > 19 then P=19 
4590 for M=0 to P:' gosub prlntx 
4600 print "prIntINQ X" 
4610 next 
4620 next 
4630 return 
4640 ' 
5071 ' 
5080 '* 

5090 'i printing Initial P-M matrix 
5100 '* 
5101 ' 
5110 1 print "«**** The Initial Part-Machine Matrix *****" 
5120 1 print:1 print:1 print 
5130 Iprlnt USING " " ; "part/mach"; 
5140 for j = 1 to 1d-1:Iprlnt USING "&";mach$(j)::next 
5150 Iprlnt USING :mach$(Id):Iprlnt 
5160 for I = 1 to tnp 

5170 Iprlnt USING " ":pnum$(X): 
5180 for j = 1 to ld-1 
5190 Iprlnt USING "#";pnimat(I, j). ; 
5200 next 
5210 Iprlnt USING "#";pmmat(I.Id) 
5220 next:Iprlnt:Iprlnt:Iprlnt 
5230 return 
5391 ' 
5392 '« 
5393 'I Generate P-M Matrix for Opltz coding method 
5394 '* --
5395 ' 

5400 open "program code.dat" for input as #4 
j = l 

5410 if eof(4) then 5420 
1nput #4,pnameS(j),pnumS(j),d1,d2,d3,d4,dS,d6,d7,d8,t 
pmmat(j,d1+1)=1 
pmmat(j,d2+11)=1 
pmmat(j,d3+21)=1 
pnriat( j ,d4+31 ) = 1 
ptnmat( j ,d5+41 ) = 1 
j=j+1 

goto 5410 
5420 close #2 

tnp=j-1:1d=50 

return 

FIGURE 50. (Continued) 
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100 '« » 

110 'I I 
120 'I Computer Aided Coding and Classification | 

130 'I I 
140 'I Production Flow Analysis (PFA) | 
150 'I Opitz Coding Method | 
160 'I Rank Order Cluster Analysis (ROCA) | 
170 'I Cluster Analysis with Similarity Coefficients (CASC) | 

180 ' 1  ]  
190 'I I 
200 'I Definitions of Variables \ 

210 ' I  I  
220 'I tnp; Total Number of Parts in the data file | 
230 'I tp: Total Number of Process of a part | 
240 'I Id: Total number of machines | 

250 '1 I 
260 ' *  * 
261 '  

262 '» 

263 '* production flow analysis 
284 '* * 
265 ' 
270 dim pname$(300),pnum$(300),raute(10,20),atp(300),mach(50) 
271 dim machid$(50) 

input "Read in part data (y/n)":ans$ 
if ans$ = "n" then goto 351 

280 gosub 470 
290 cIs:locate 7 
300 Input "Do you want to add part data (y/n)";ans$ 
310 if ans$="y" then gosub 1080 
320 els:locate 7: 
330 input "Do you want to check the data (y/n) ":ans$ 
340 if ans$ = "y" then gosub 840 

350 gosub 650 :' find and print machine list 
351 ' 

352 '* 7 
353 '] clustering algorithms (ROCA, CASA) 
354 '* -
355 ' 
360 dim pmmat(tnp,40) 
370 ols:locate 10,40 
380 print "1=";"ROCA" 
390 locate 11,40 
391 print "2=";"CASC" 

392 locate 12,40 
393 print "3=";"Exit" 

400 locate 14,32:input "Enter the number ";method 

FIGURE 51. The program listing of the PFA coding method with the 
CASA and ROCA classification methods 
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410 if method = 1 then 1300 ; ' Rank order clustering algorithm 
420 if method = 2 then 2750 : ' Cluster analysis with similarity coeff. 
430 if method = 3 then end ; ' End of program 
440 locate 14,32;input"Enter the number again";method:goto 410 
441 ' 
450 '* 
460 'I reading data file 
470 '* 
471 ' 
480 key off;els 
451 locate 10,28:print "Part data file is loding" 
490 locate 11,31:print "Please wait " 
500 tnp=1;id=1 

510 open "program parts.dat" for input as #2 
520 if eof(2) then 800 
530 i nput #2, pnames ( tnp ), pnumS ( tnp ), atp ( tnp ) 
540 tp=atp(tnp) 
550 for j=1 to tp 
560 input #2,route(tnp,j) 
570 next 
580 tnp=tnp+1 

590 goto 520 
600 tnp=tnp-1; close #2 
610 return 
611  '  

620 ' *  

630 '1 printing machine list 
640 '* -
641 ' 
650 read i d 
660 for i = 1 to id 

700 read mach(i) 
710 machid$(i)=chr$(i+64) 
720 next 
801 data 25 
802 data 16,10,9,28,18,1,2,17,6,7,24,12,33,21 
803 data 14,20,13,11,35,30.23,27,36,31,25 
810 print "Press any key to continue" 
820 • a$=inkey$:if a$="" then 820 
830 return 

831 ' 
840 '* - - - -
850 '1 print a part name, a part number, total # of processes 
860 'I and process sequences 

870 '* -
871 ' 
880 Cls : locate 7 

FIGURE 51. (Continued) 
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890 print "You finished ";tnp;"part data to type In" 
900 print "Press any key to continue" 
910 a$=1nkey$:if a$="" then 910 
920 for 1=1 to tnp 
930 gosub 4770 :' Correction 
940 next 
950 open "program parts.dat" for output as #3 
980 for 1 = 1 to tnp 

970 write #3, pnaine$(I) ,pnum$(I ) ,atp(I) 
980 for j= 1 to atp(I) 

990 write #3, routed.j) 
1000 next 
1010 next 
1020 close #1 

1030 print "Press any key to continue" 
1040 a$ =1nkey$: If A$ ="" then 1040 
1050 return 
1051 ' 
1060 '* 

1070 ' I  Interactive Input of part data 
1080 '* 

1081 ' 

1090 Input "How many part data you want to type 1n";N 
1100 for I=tnp+1 to tnp+N 

1110 cIs;locate 7 
1120 Input "Enter part name ";pnames(I) 
1130 Input "Enter part number ";pnum$(I) 
1140 input "Enter total number of process for this part";atp(I) 
1150 for j= 1 to atp(I) 

1100 print "Enter the ":j:"th process sequence" 
1170 Input routed.j) 
1180 next 

1190 gosub 4770 
1200 open "program parts.dat" for append as #1 
1210 write #1, pname$(I),pnum$(I),atp(I) 
1220 for j= 1 to atp(I) 
1230 write #1, routed.j) 
1240 next 
1250 close #1 
1260 cIs;locate 7 
1270 next 
1280 tnp=tnp+n 

1290 return 
1300 ' 

1310 '« -
1320 '] Initialization 
1330 '* 
1331 ' 
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arase route:tnp=272 

1340 dim rl1st(tnp,2),cllst(50,2),yl1st(tnp),nl1st(tnp),tl1st(tnp,45) 
13S0 dim ytl1st(tnp),ntlist(tnp),rtemp(tnp),ctemp(SO),tmach$(50) 
1360 dim tpnum$(tnp),machtemp(50) 
1361 ' 
1370 '* - — 

1380 'j Generate Part-Machine Matrix 
1390 '* 
1391 ' 

Gis:locate 11:Input "Reading part-machine matrix (y/n)";ans$ 
If ans$ = "n" then 1400 
open "program 1nc1d.dat" for Input as #4 
Input #4, tnp,Id 
erase pmmat:d1m pmmat(tnp,45) 
for j = 1 to Id 

input #4, maoh1d$(j) 
next 
for j = 1 to Id 

Input #4, mach(j) 
next 
for 1 = 1 to tnp 

Input ^4, pnum${1) 
for j = 1 to Id 

input #4, pmmat(1,j) 
next 

next 
close #4 

goto 1491 
1400 Gls:locate 10,25:pr1nt "Generating Part-Machine Matrix" 
1410 locate 11,31;pr1nt "Please wait » 
1420 col=1:row=1 

1430 If row > tnp then goto 1491 
1440 col=1 
1450 for 1=1 to Id 
1460 if route(row,col ) = machd) then pmmat( row, I ) = 1 

1470 next 
1480 If col atp(row) then col=col+1:goto 1450 
1490 row=row+1:goto 1430 
rem ' 
rem ' Print the Initial p-m matrix 
rem ' 
1491 for i = 1 to tnp:rl1st(1,1) = 1 : next 

for j = 1 to id:rl1st(j,1)=j: next 

Iprint:Iprint:Iprint 
Iprint "«*«*» The Initial Part-Machine •«***" 
Iprint:Iprint:Iprint:' gosub 2610 

1500 iteration=0:crlt=0 
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cIs:locate 10,25:print "Rank Order Clustering Analysis" 
locate 11,31:pr1nt "Please wait " 

1510 for I = 1 to tnp 

1520 rllst(I.I) = I 

1530 next 
1540 for j : 1 to id 
1550 clist(j,1) = j 
1560 next 
1570 i terat i on= i terat i on+1 
1580 ' gosub 2810 
1581 ' 
1590 1590 
1600 / 1 

1 Rowwise sorting 
1610 1610 
1811 ' 
1620 for j = id to 1 step -1 
1630 y=0:z=0 

1640 for I = tnp to 1 step -1 
1850 if pmmat(I,j) = 1 then y=y+1:ylist(y)=I:goto 1870 
1660 z=z+1:nlist(z)=I 

1670 next 
1680 for I = 1 to tnp:rlist(1,2)=0:next: 1 = 1 

1690 for 1 = y to 1 step -1 

1700 if I > tnp then goto 1760 
1710 if rlist(I.I) = yHst(l) then 1720 else 1740 
1720 rlist(I,2)=1 

1730 goto 1760 
1740 1 = 1  +  1  

1750 goto 1700 
1780 1=1:next 

1770 y=0:z=0 

1780 for I = 1 to tnp 

1790 If rlist(I,2) = 1 then 1800 else 1830 
1800 rlist(I,2)=0;y=y+1 

1810 ytlist(y)=rlist(I,1) 
1820 goto 1850 
1830 z=z+1 

1840 ntl ist(z)=rl istd , 1 ) 
1850 next 
1860 for 1= 1 to y : rlist(1,1)=ytlist(1): next 

1870 for l=y+1 to tnp: rlist(1,1)=ntlist(1-y): next 
1890 next 
1900 for i = 1 to tnp; tpnumS(i) = "": next 

1910 for i = 1 to tnp 

1920 index = rlist(i,1) 

1930 tpnumS(i) = pnumS(< ndex) 

1940 for j = 1 to id 
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1950 tlistdj) = pminat ( 1 ndex, j ) 
1960 next 
1970 next 
1980 for 1 = 1 to tnp; pnumSd) = next 
1990 for i = 1 to tnp 

2000 pnumSd) = tpnumSd) 
2010 for j = 1 to id 

2020 pimnatC 1, j ) = t1 ist( 1, j ) 
2030 next 
2040 next 
2060 ' gosub 2610 
2061 ' 
2070 
2080 ' 1  Colummwlse sorting 
2090 
2091 ' 
2100 for I = 1 to tnp:rlist(I,1)=I:next 
2110 for j = 1 to id:clist(j,1)=j;next 

2120 for I = tnp to 1 step -1 
2130 y=0:z=0 

2140 for j = id to 1 step -1 

2150 if pmmatdj) = 1 then y=y+1 ;y1 ist(y)=j :goto 2170 

2160 z=z+1:nlist(z)=j 

2170 next 
2180 for j = 1 to id:clist(j,2)=0:next:j=1 
2190 for 1 = y to 1 step -1 

2200 if j > id then 2260 

2210 if cl ist( j , 1 )=yHstd ) then 2220 else 2240 
2220 clist(j,2) = 1 

2230 goto 2260 
2240 j=j+1 

2250 goto 2200 

2260 j = 1 

2261 next 
2270 y=0:z=0 

2280 for j = 1 to id 

2290 if c1ist(j,2) = 1 then 2300 else 2330 
2300 clist(j,2)=0:y=y+l 

2310 ytlist(y)=clist(j,1) 

2320 goto 2350 
2330 z=z+1 

2340 ntlist(z)=cllst(j.1) 

2350 next 
2360 for 1=1 to y:cllst(1,1)=ytlist(1):next 

2370 for l=y+1 to id:c1ist(1,1)=ntlist(1-y): next 
2390 next 
2431 for j : 1 to id: tmachS(J) = machtemp(j)=0: next 
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2440 for j = 1 to Id 

2450 index = cHst(j,1) 
2460 tmachs(J) = mach i d$(i ndex) 

machtemp(j)=mach(Index) 
2470 for i = 1 to tnp 
2480 t1ist(i,j) = pmmat(i,index) 
2490 next 
2500 next 
2501 for 1=1 to tnp 
2502 for j=1 to id 
2503 if tlist(1,j) = pmmat(i,j) then goto 2505 
2504 crit = cri t+1 
2505 next 
2506 next 
2497 if crit = 0 then goto 2554 
2510 for j = 1 to id; machidSCJ) = mach(J)=0: next 
2520 for j = 1 to id 
2530 machid$(j) = tmach$(j) 

mach(j)=machtemp(j) 
2540 for 1 = 1 to tnp 

2550 pmmatCi.j) = tlist(i,j) 
2551 next 
2552 next 
2553 goto 1500 
2554 ' 
2555 ' print final matrix 
2556 ' 

Iprint:Iprint;Iprint 
1 print "***«* Number of machine usage *****" 
Iprint:Iprint "Number Machine No."; 
Iprint " Machine id.";" num. of usage" 
for j = 1 to id 

numuse = 0 

for 1 = 1 to tnp 
if pmmat(I,j) = 1 then numuse=numuse+1 

next 
Iprint j,mach(J),machid$(j),numuse 

next 
Iprint:Iprint:Iprint 
Iprint "***** Final Matrix **»**":Iprint 
Iprint:Iprint:' gosub 2610 

rem 

rem Delete exceptional and bottleneck problem 
rem 

els:locate 11,10 
input "Do you want to investigate the final matrix (y/n)";ans$ 
if ans$="n" then goto 2589 
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open "program Incld.dat" for output as #4 
write #4, tnp,id 
for j = 1 to id 

write #4, maohid$(j) 
next 
for j = 1 to id 

write #4, mach(j) 
next 
for i = 1 to tnp 

write #4, pnum$(i) 
for j = 1 to id 

write #4, pmmat(i,j) 
next 

next 
close #4 

input "Printing final part-machine matrix (y/n)":ans$ 
if ans$ = "y" then gosub 2800 

rem 
rem 
rem 

cIs;locate 10 
print "1: Bottleneck" 
print "2: Exceptional cases" 
print "3; Delete rows or columns" 
input "Enter the choice"; choice 
on choice goto 2580, 2570, 2560 

rem 
rem 
rem 
2560 input "Column or row (c/r)";ans$ 

if ans$ = "c" then 2561 

input "Enter the number of rows you want to drop";numrow 
tnp=tnp-numrow 

goto 1500 
2561 input "Enter the number of columns you want to drop";numcol 

id=id-numco1 

goto 1500 
rem 
rem 
rem 

2570 cIs:locate 10 
print "1; Machine" 
print "2: Part" 
print "3: Element" 
input "Your choice"; choice 

on choice goto 2571, 2572, 2573 
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rem 
rem 
rem 

2571 input "Enter machine number you want to drop";delmnum 
for 1 = 1 to tnp 

pmmat(1,delmnum)=0 
next 

input "Do you have more machine to drop";ans$ 
if ans$ = "y" then 2571 
goto 1500 

rem 
rem 
rem 
2572 input "Enter part number you want to drop";delpnum 

for j = 1 to id 
pmmat(delpnum,j)=0 

next 

input "Do you have more part to drop";ans$ 
if ans$ = "y" then 2572 

goto 1500 
rem 
rem 
rem 

2573 input "Enter the row and column H of element";r,c 
pmmat(r,c)=2 

input "Do you have further exceptional elements (y/n)";ans$ 
If ans$= "y" then goto 2573 

goto 1500 
2580 input "Enter the machine # you want to divide":mnum 

input "How many blocks you want to create"; blocks 
input "Enter the last machine number";lastmnum 
print blocks;" blocks you requested" 
for ij = 1 to blocks-1 

print "Enter the ";ij;"the block"; 
input "1imit";blk(1j) 

next 
numof iter=blocks-1 
addition = 1 
if numofiter = 1 then lowlim1t=b1k(1):upperlim1t=tnp:goto 2584 
lowl1mlt=blk(1) 
upperlim1t=blk(2)-1 
gosub 2587 
mach1d$(ld+1)=chr$(id+2+64):mach(1d+1)=lastmnum+1 
addl11on=add111on+1 
lowlim1t=blk(2) 
upper11mit=tnp 
gosub 2587 
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machid$(id+2)=chr$(ld+3+64):mach(1d+2)=1astmnum+2 
id-ld+blocks-l 
gosub 2594 
goto 1500 

2584 gosub 2587 
mach1d$(i d+1)=chr$(i d+2+64):mach(i d+1) = 1astmnum+1 
1d=1d+b1oeks-l 

gosub 2594 
goto 1500 

2585 ' 
2586 ' Revise the part-machine matrix 
2587 ' 

for ijk = lowllmit to upperllmit 
if pmmat(1jk.mnum) 1 then 2588 
pmmat(1jk.mnum) = 0 
pmmat(Ijk,Id+addltlon) = 1 

2588 next 
return 

2589 ' 
2590 ' Saving the final part-machine matrix 
2591 ' 

goto 370 
2594 ' 
2595 ' Printing the revised Information 
2598 ' 

1print "After machine";mach(mnum);"is divided"; blocks;"machines" 
1 print "Machine 1 = ";mach(mnum) 
for 1 = 1 to blocks-1 

Iprint "Machine ";i+1;" = ":mach(id-1+1) 

next 
return 

2600 ' 

2610 ' Printing the part-machine matrix 
2611 '  

2620 Iprint "Iteration "; iteration:Iprint:Iprint 
2630 Iprint using " part/ mach "; 
2640 for j = 1 to id-1:Iprint USING ; mach1d$(j): : next 
2650 Iprint using ; machld$(Id):Iprint 
2660 for I = 1 to tnp 
2670 Iprint using "### rlist(I,1); 
2671 Iprint using " pnumS(1); 
2680 for j = 1 to id-1 

2690 Iprint using pmmat(I,j); 
2700 next 
2710 Iprint using pmmat(I.ld) 
2720 next 
2730 Iprint:Iprint:Iprint 
2740 return 
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2741 
2750 
2760 
2770 

2790 
2791 
2800 
2810 
2820 
2821 
2830 
2840 
2850 
2860 
2870 
2880 
2890 
2900 
2910 
2920 
2921 
2930 
2940 
2950 
2951 
2960 
2961 
2970 
2971 
2980 
2981 
2982 
3131 
3140 
3150 
3160 
3161 
3170 
3180 
3190 
3200 
3210 
3220 

3230 

3240 
3250 
3260 

Cluster Analysis with Similarity inefficient 

dim B(tnp),C(tnp),A(tnp) 

Generate Part-Machine Matrix 

cIs:locate 10,25:print "Generating Part-Machine Matrix" 
locate 11,31:print "Please wait "; 
col=1 :row=1 

if row > tnp then goto 2930 
col =1 

for 1=1 to id 
if route(row,col) = mach(I) then pmmat(row,I)=1 

next 
if col atp(row) then col=co1 + 1: goto 2880 
row=row+1:goto 2860 

Calculation of Similarity Coefficient Matrix 

els:locate 10,18 
print "Cluster Analysis with Similarity Coefficient" 
locate 11,20 
print "Calculating similarity coefficient matrix" 
locate 12,31 
print "Please wait " 

' * 

I Prim Tree Data Structure 

DLARGE=0:a=0:b=0:c=0 

if tnp 1 then ifAULT=1:end 
IFAULT=0 
for 1=2 to tnp 

A(I)=0:B(I)=0:C(I)=DLARGE 

next 
j = 1 : 

for 1=2 to tnp 

MIN'OLARGE 
for K=2 to tnp 
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3270 if A(K) = 0 then 3280 else 3320 
3280 if j >= K then row1=j:row2=k else row1=k:Pow2=j 
3281 for col = 1 to id 
3282 If pmmatCrowl ,co1) = 1 and ptnmat(row2,col ) = 1 then a=a+1 
3283 if pminat(row1 ,col ) = 1 and pinmat(row2,col ) =0 then b=b+1 
3284 if pmniat(row1 ,col )=0 and pinmat(row2,col ) = 1 then c=c+l 
3285 next 
3290 DIST=a/(a+b+c) 
3291 a=0:b=0:c=0 

3300 If DIST >= C(K) then C(K)=DIST:B(K):j 
3310 If MIN C(K) then MIN=C(K):NEX=K 

3320 next 
3330 j=NEX:A(j)=1:print "next = ";nex 

3340 next 
3360 1print " Results of CASA" 
3370 Iprint:1 print : 1 print 
3371 Iprint " Prim's Tree Structure" 
3380 Iprint:iprint 
3390 for 1=2 to tnp:Iprint pnum$(1),1.b(1),o(1):next:Iprint:Iprint 
3391 ' 

3400 '* 
3410 'I printing Minimal Spanning Tree 
3420 '* 
3421 ' 
3430 dim ROUT(tnp),HIST(tnp) 
3440 for 1= 1 to tnp: HISTd )=0:next 
3450 for I = 2 to tnp 
3460 TEMM=B(I) 
3470 HIST(TEMM)=HIST(TEMM)+1 

3480 print TEMM,HIST(TEMM) 
3490 next 
3500 R0UT(1)=1: j=1: K=1 

3510 for I = 2 to tnp 

3520 if HIST(K) = 0 then 3530 else 3550 
3530 j=j-1:K=R0UT(j) 

3540 goto 3520 
3550 HIST(K)=HIST(K)-1 
3560 for M=2 to tnp 

3570 if K=B(M) then 3580 else 3610 
3580 Iprint K.M.C(M):j=j+1 
3590 K=M:R0UT(j)=K 
3600 B(M)=-B(M) 

3610 next 
3620 next 
3622 ' 
3630 
3640 ' I  Single Linkage Cluster Analysis 
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3650 'I I 
3660 'I s: previous point indicator | 
3670 ' I  t: next print Indicator | 
3680 'j u,V : switches ] 
3690 'I k: total number of clusters | 
3700 'I h: list which contains end-of-makers | 
3710 '* « 

3711 ' 
3720 dim G(tnp),H(tnp),X(20»tnp),Wl(tnp),W2(tnp) 
3721 1 print:1 print 

3730 Iprint " Result of Single Linkage Cluster Analysis" 
3740 Iprint:Iprint 
3741 ' 
3750 '* * 

3760 '\ this loop v/111 find the Omax (Maximum distance) | 
3770 '* « 
3771 ' 
3780 for 1=2 to tnp:zz=-B(I):B(I)=zz:pr1nt B(I):next 
3790 DMAX=C(2) 
3800 for 1=3 to tnp 

3810 if OMAX C(I) then DMAX=C(I) 
3820 next 
3821 ' 
3830 '» : * 

3840 '\ Initialization \ 
3850 '* * 
3851 ' 
3860 for 1= 1 to tnp 

3870 G(I)=I :' List G consists initially of all points as single groups 
3880 H(I)=1 :' Thus, initially, list H should have all 1's 
3890 X(I)=3 Initially, t=3 for all points 

3900 next 
3910 P=0 

3920 0ELTA=0.05 
3930 LEVEL = DELTA«(1+INT(DMAX/DELTA)) 
3940 WHILE K 1 
3950 P=P+1 
3960 for I = 2 to tnp 
3961 ' 
3970 '» * 

3980 'I for point whose length Is less than level \ 
3990 '• * 
3991 ' 
4000 if C(I) > LEVEL then 4010 else 4280 
4010 j=B(I):C(I)=C(1)-C(I)-0.001 ' Links once used are decreased 

4020 ' to zero to prevent re-use 
4030 K=I 

FIGURE 51. (Continued) 



www.manaraa.com

236 

4040 
4050 
4060 
4070 
4080 
4090 

4100 

4110 
4120 
4130 
4140 

4150 
4160 
4170 
4180 . 

4190 
4200 
4210 
4220 
4230 
4240 
4250 
4260 
4270 
4280 next 
4281 If level > 0.8 or level 0.5 then 4301 
4287 '* -
4288 'I prints group 
4290 '* 
4291 1 print "level ="; level : 1 print 
4292 for 1=1 to tnp 
4293 1 print g(i): 
4294 if h(i)=1 then 1print 
4295 next : 1pri nt:Ipri nt 
4300 print "printing group" 
4301 '» 
4310 W=N*tnp:U=0:V=0:K=0 

4320 for 1=2 to tnp:K=K+H(I); next 

4330 if P 20 then 4340 else 4480 
4340 for 1= 1 to tnp 
4350 j=G(I);S=X(j+W+N) 

4380 if U=0 then 4370 else 4390 
4370 if H(I) = 1 then T=3 else if S=3 then T=1:U=1:V=1 else T=0;U=1 

4380 goto 4480 
4390 if H(I) = 1 then 4400 else 4420 
4400 if V = 0 then T=3:U=0 else T=2:U=0:V=0 

4410 goto 4460 
4420 if S=2 OR S=3 then 4430 else 4450 
4430 if V = 0 then T=1:U=1:V=1 else T=S:U=1 

for M=1 to tnp 
if G(M)=j then Q=M 
if G(M)=K then R=M 

next 
if Q > R then M=R:R=Q:Q=M 
S=Q 

if S > tnp goto 4280 
if H(S) 0 then 4120 else S=S+1:goto 4100 
T=R-1 

if T = 0 goto 4280 

if H(T) 0 then 4150 else T=T-1:goto 4130 
T=T+1:H(S)=0 
R=T 

if R > tnp goto 4280 
W1(R-T)=G(R):W2(R-T)=H(R) 
if H(R) 0 then 4200 else R=R+1:goto 4170 

W=S+1:U=R-T+1 

for M=T-1 to W step -1 
G(M+U)=G(M);H(M+U)=H(M) 

next 
U=R-T 

for M=o to U 
G(M+W)=W1(M):H(M+W)=W2(M) 

next 
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4440 goto 4480 
4450 if V = 0 then T=0:U=1 else T=4 

4460 X(j+W)=T 

4470 next 
4480 LEVEL=LEVEL-OELTA 

4490 print:print:print 
4500 print "1evel=";LEVEL:prlnt 
4510 for z = 1 to tnp:print B(z),C(z),G(z),H(z): next 

4530 WEND 
4540 ' gosub topprlnt 
4550 for 1=1 to tnp 
4560 J=G(I):' gosub Sldeprlnt 

4570 print "prlntlNG SIDE" 
4580 If P > 19 then P=19 
4590 for M=0 to P:' gosub prlntx 
4800 print "prlntlNG X" 
4610 next 
4820 next 
4830 goto 370 

4840 ' 
4850 ' 
4860 ' 
4870 ' 
4880 els:locate 3 
4890 print "The part name is ";pnames(I) 
4700 print "The part number is ";pnumS(I) 
4710 print "The total numbers of the process sequences are ":atp(I) 
4720 for j = 1 to atp(I) 

4730 print j,route(I,j) 
4740 next 
4750 return 
4760 ' 
4770 ' 
4780 ' 
4790 
4800 
4810 
4820 
4830 
4840 
4850 
4860 
4870 
4880 
4890 
4900 
4910 

gosub 4680 
input "Are these correct (y/n)":ans$ 
If ans$- = "y" then 5070 

gosub 4680 
print:prlnt:prlnt "Which information you want to change?" 
print "1. Part name" 
print "2. Part number" 
print "3. Total number of process sequence" 
print "4. Process sequence" 
print "5. None" 
input "Enter the corresponding number"; ans 
if ans = 1 then input "Enter the part name agaln";pname$(I): goto 4820 
if ans : 2 then input "Enter the part number again";pnums(I):goto 4820 
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4930 
4940 
4950 
4960 
4970 
4980 
4990 

5000 
5010 
5020 
5030 
5040 
5050 
5060 
5070 

238 

If ans = 3 then 4950 
If ans = 4 then 5010 
if ans = 5 then 4790 
input "Enter total number of process sequence ";atp(I) 
for j=1 to atp(I) 

print "Enter the ";j;"th process sequence" 
input routed,j) 

next 
goto 4820 
input "Enter the number of process sequence ";SEQ 
input "Enter the correct process number ";route(I,SEQ) 
input "Is there any other correction on sequence ";ans$ 
if ans$ = "y" then 5010 
goto 4820 
print "Enter the number again";goto 4820 
return 

51. (Continued) 
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APPENDIX B: GEOMETRICAL CODES OF PARTS 
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TABLE 30. Codes of parts with the Opitz system 

Part name Part number Codes Accuracy 

BODYVALVE 7J1025 4 2 4 5 3 1 0 0 .04 
HOUSING 5J0766 8 9 2 0 2 2 0 0 .04 
COVER 6J0433 6 9 2 2 0 3 0 0 .06 
COVER 6J0434 6 9 7 2 2 4 0 0 .06 
COVER 3J0601 4 2 3 0 1 1 0 0 .047 
BLOCK 4J1091 4 1 4 5 2 1 0 0 .12 
ADAPTER 5J1340 4 7 3 5 1 1 0 0 .08 
BLOCK 3J2973 8 3 1 5 0 2 0 0 .002 
CAP-FILTER 6F4350 3 2 4 0 0 2 0 0 .41 
COVER 2J8069 6 0 1 2 2 2 0 0 .12 
RETAINER 5J8773 6 0 2 2 1 2 0 0 .04 
COVER 8J0130 6 0 2 5 2 3 0 0 .08 
COVER 8J0444 3 2 4 2 1 2 0 0 .12 
COVER 1U0488 8 3 2 3 1 3 0 0 .04 
COVER 4T1014 3 2 4 3 1 1 0 0 .02 
COVER 4J1137 8 3 5 5 1 3 0 0 .008 
BODY-VALVE 9J1234 8 9 6 2 1 2 0 0 .02 
HOUSING 5J1553 4 2 4 1 1 1 0 0 .04 
BLOCK 3J1970 8 2 5 3 1 2 0 0 .12 
COVER 8J2045 8 3 5 5 1 2 0 0 .06 
BODY-PILOT 5J2438 4 2 4 2 1 2 0 0 .08 
BODY-PILOT 4J2696 3 2 3 3 1 1 0 0 .08 
ACTUATOR 1U2764 7 1 6 0 2 2 0 0 .04 
COVER 3G2840 8 3 4 3 0 2 0 0 .002 
COVER 3G2841 8 3 4 3 0 2 0 0 .02 
COVER 3G2842 3 1 4 3 1 2 0 0 .002 

BODY-VALVE 3J2975 4 3 4 0 2 1 0 0 .005 
ADAPTER 4J3291 4 1 3 3 1 1 0 0 .06 
HOUSING 9J3441 3 1 4 2 1 1 0 0 .06 
RETAINER 7J3897 3 3 4 3 1 1 0 0 .04 
HEAD 1U4010 3 5 4 2 1 1 0 0 .002 
COVER 9J4077 3 5 4 2 1 1 0 0 .06 
RETAINER 9J4097 3 1 4 2 1 1 0 0 .12 
HOUSING-VALVE 4J4571 4 3 4 2 1 1 0 0 .04 
HOUSING 4T4632 4 1 4 2 1 1 0 0 .02 
COVER 4T4636 3 3 4 2 1 1 0 0 .02 
BODY 9J4847 3 1 4 2 1 1 0 0 .12 
ADAPTER 9J4941 6 1 2 5 1 2 0 0 .12 

HOUSING-VALVE 2J5143 8 3 2 3 1 2 0 0 .05 
MANIFOLD 6P5391 3 1 0 0 2 1 0 0 .12 
BODY-VALVE 9M5550 3 1 4 0 1 1 0 0 .04 
COVER 8J5618 6 0 7 2 1 2 0 0 .06 
BODY 8J5875 4 2 4 2 2 3 1 0 .06 
BODY 7J5928 4 3 4 5 4 2 0 0 .06 
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TABLE 30 (Continued) 

Part name Part number Codes Accuracy 

HOUSING-SPRING .4J6485 4 5 3 2 1 3 0 0 .04 
BODY-PILOT 7J7674 4 3 4 2 2 1 0 0 .06 
HOUSING 9J7749 4 1 3 5 2 1 0 0 .06 
HOUSING-SPRING 3J7807 3 5 4 4 2 2 0 0 .12 
COVER 6J7908 3 5 4 2 4 1 0 0 .04 
COVER 7J8056 6 5 2 5 1 3 0 0 .06 
BODY-VALVE 7J8308 3 5 4 2 2 1 0 0 .06 
COVER 8J8573 3 3 4 2 2 1 0 0 .12 
HOUSING-EJECTOR 8J8660 2 0 0 2 2 1 0 0 .12 
BODY 8J8661 4 2 4 0 1 1 0 0 .12 
HEAD 5J8774 3 1 4 5 1 1 0 0 .04 
HEAD 5J8793 8 3 1 3 1 2 0 0 .04 
BODY 8J8829 8 9 6 2 2 2 0 0 .06 
BODY 4T9151 4 1 4 5 2 2 0 0 .01 
ADAPTER 4T9156 3 1 4 5 1 2 0 0 .002 
BODY 8J9257 4 3 4 5 1 1 0 0 .08 

RETAINER-SPRING 6J9992 3 8 4 3 1 2 0 0 .04 
BODY-VALVE 5J9110 3 3 4 2 0 2 0 0 .04 
BODY-BRAKE VALVE 3S7445 2 6 0 1 0 0 2 0 .01 
HOUSING-VALVE 8J2308 8 3 1 5 1 3 0 0 .06 
BODY 8J2302 6 9 6 3 2 3 0 0 .12 
BODY 8J0084 8 3 2 3 3 3 7 0 .128 
BODY-VALVE 8J0510 8 5 6 6 4 3 0 0 .06 
BODY-VALVE 3G0650 4 5 4 3 4 1 0 0 .12 
BODY 9J0752 4 1 4 0 2 0 0 0 .02 
BODY-VALVE 5J0899 8 3 5 3 1 3 1 0 .04 
BODY-VALVE 4T0958 4 5 4 3 2 1 0 0 .02 
COVER 9T1495 6 5 2 3 1 4 0 0 .005 

COVER 8J1701 8 9 2 5 1 3 0 0 .06 
BODY 4T1889 8 0 6 5 1 3 0 0 .005 
BODY-VALVE 8J1917 8 1 6 3 2 4 0 0 .06 
HOUSING 1U2083 8 1 6 5 1 2 0 0 .005 
BODY 1U2177 8 3 2 5 1 2 0 0 .005 
BODY-VALVE 7J2266 8 3 6 5 1 2 1 0 .05 
BODY 8J2305 8 1 6 3 1 3 0 0 .12 
COVER 3T2321 4 5 4 1 1 1 0 0 .005 
TUBE 9T2382 2 0 0 0 1 2 2 0 .01 
MANIFOLD 9T2887 6 0 6 3 1 4 0 0 .005 
BODY 9J3382 8 3 6 3 2 3 0 0 .24 

HOUSING-ELEV 9J3453 4 1 3 2 1 2 0 0 .24 
HOUSING-VALVE 8J3554 4 5 4 3 1 0 0 0 .06 
COVER 8J3665 8 3 4 5 3 4 0 0 .24 
DIAP-ADAPTER OW019819012 4 5 3 3 1 1 0 0 .016 
PLUG-M-FORM 10A7182X012 2 1 0 0 1 0 2 0 .0156 
PLUG-VALVE 11A5214X022 1 4 0 2 1 1 0 0 .0156 

PLUG-VALVE 11A5216X012 1 4 0 2 1 1 0 0 .0156 
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TABLE 30 (Continued) 

Part name Part number Codes Accuracy 

PLUG-VALVE 11A5324X012 1 7 1 1 1 2 0 0 .0156 
PLUG-VALVE 11A5326X012 1 7 1 1 1 2 0 0 .0156 
BUSHING 15A1288X012 1 1 0 0 1 0 8 0 .0156 
PLUG-LINER i5A6470X012 1 4 2 2 0 1 3 0 .0156 
PLUG-EQ-% 15A6480X012 1 5 2 2 0 1 2 0 .0156 
PLUG-QUICK-OPENING 15A6490X012 1 1 2 2 0 1 2 0 .0156 
MICRO-FORM 15A6503X012 2 1 2 2 0 1 2 0 .0156 
SEAT-RING 1A510735072 0 2 1 3 0 1 0 0 .0313 
BUSHING 1B169135012 1 0 0 0 0 1 2 0 .0156 
SPRING-CASE 1B883119012 1 1 0 2 0 3 0 0 .0156 
VALVE-BODY 1C477219012 3 8 4 0 6 3 0 0 .0625 
CONT-VVE-HOUSING 1C794935032 0 4 1 0 6 0 2 0 .0313 
PROP-ADJ-BLOCK 1C899514022 3 0 4 2 8 1 2 0 .0313 
BOTTOM-RING 1D228235072 0 2 1 3 8 2 0 0 .0313 
REGULATOR-BODY 1E3943000A2 3 2 4 2 7 3 0 0 .0313 
SPRING-CASE 1E501208012 4 2 6 0 4 2 0 0 .0625 
ORING-HOLDER 1E824609092 1 4 2 0 4 1 2 0 .0156 
FLANGE-PACKING 1E944223072 8 3 5 5 0 2 0 0 .0156 
POPPET 1H830814012 1 1 2 3 0 1 2 0 .0156 
REGULATOR-BODY 1J1277000B2 1 1 2 3 0 2 0 0 .0625 
STEM-PLUG 1K586935162 2 0 0 0 0 0 2 0 .0625 
RETAINER-SPRING 1L432314012 1 1 1 0 0 0 7 0 .0313 
CAGE 1R124835072 3 2 4 3 4 1 0 0 .0313 
FLANGE-BOTTOM 1R125624092 0 0 0 1 4 2 2 0 .0313 
SEAT-RING 1R126335072 0 1 1 0 4 1 2 0 .0625 
STEM-PLUG 1R250935162 2 0 0 0 4 0 2 0 .0625 
SEAT-RING 1U222646172 0 4 1 0 4 2 2 0 .0156 
CAGE-LOWER 20A3382X022 3 2 4 2 0 2 0 0 .0156 

DIAPHRAGM-RETAINER 25A1289X012 1 6 1 0 0 0 2 0 .0156 
CAGE 25A6687X012 1 1 1 0 0 2 0 0 .0156 
SEAL-CARRIER 28A2514X012 0 1 1 1 0 3 0 0 .0156 
FOLLOWER-SHAFT 28A2519X012 2 3 2 1 0 1 2 0 .0156 
REGULATOR-BODY 2E4085000A2 1 1 1 1 0 3 0 0 .0156 
SPRING-CASE 2E542919042 3 2 5 4 1 3 0 0 .0156 
PLUG-MICRO-FORM 2F1428000A2 2 5 0 0 1 1 2 0 .02 
BONNET 2F143224092 1 5 1 1 1 2 2 0 .0156 
SPRING-CASE 2J496219012 1 1 2 2 1 2 0 0 .0156 
BONNET 2K562523022 1 4 2 1 1 2 0 0 .0156 
VALVE-BODY 2L342619012 1 1 2 0 0 3 0 0 .001 
VALVE-BODY 2L339519012 1 0 2 0 0 2 0 0 .001 
VALVE-BODY 2L373522012 1 1 2 0 0 3 0 0 .001 
SPRING-CASE 2L416322012 1 1 2 1 0 2 0 0 .001 
PLUG-MICRO-FORM 2N5532000A2 2 5 0 0 0 0 2 0 .001 
BONNET 2R124724092 3 2 4 3 4 2 2 0 .001 
PLUG-EQ-% 2R2454000A2 2 5 0 0 4 1 2 0 .001 
BONNET 2R2617X0012 3 2 4 3 0 2 2 0 .0313 

V. 
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TABLE 30 (Continued) 

Part name Part number Codes Accuracy 

BONNET 2R331019022 3 2 4 3 4 3 0 0 .0313 
QUICK-OPEN-CAGE 2U223433272 3 2 4 3 0 2 0 0 .0156 
EQUAL-%-CAGE 2U223733272 3 2 4 3 2 2 0 0 .0156 
QUICK-OPEN-CAGE 2U740448932 3 2 4 3 0 2 7 0 .0156 

EQUAL-%-CAGE 2U741048932 3 2 4 3 0 2 7 0 .0156 
UPPER-CAGE 36A2065X012 3 2 4 3 0 2 7 0 .0156 

SEAL-PROTECTOR-RING 38A2508X012 0 6 1 2 0 4 0 0 .0156 

BODY-OUTLET 38A2511X012 0 6 3 2 0 4 0 0 .0156 
VALVE-BODY 3B186522012 4 8 4 0 7 2 3 0 .0156 

SPRING-CASE 3C780819042 1 1 1 1 0 3 0 0 .0156 

SPRING-CASE 3N698122012 1 1 2 2 0 4 3 0 .0156 

SPRING-CASE 3N698322012 1 1 2 2 0 3 3 0 .0156 

VALVE-BODY-RELIEF 3P786933092 3 8 4 0 0 4 0 0 .0156 

VALVE-BODY 3R124624092 3 8 4 5 1 2 3 0 .0156 

SPRING-CASE 3V708322012 3 5 4 3 1 4 3 0 .0156 

SPRING-CASE 4E397919012 1 1 2 2 1 5 0 0 .0156 

INSERT T1095224102 1 0 1 0 1 1 2 0 .01 

PLUG T1173614012 0 1 2 0 1 1 7 0 .015 

CONTACT 6870004001 2 4 0 0 0 0 7 0 .005 

SLEEVE 6870005001 2 0 0 0 0 0 9 0 .003 

ROD 6870006001 2 4 0 0 0 0 7 0 .0004 

CONNECTOR 6870007003 1 0 1 0 0 0 7 0 .001 

PLATE 6870007001 6 3 1 0 1 3 7 0 .008 

SKIN 6870008002 6 1 0 0 0 4 7 0 .008 

TUBE 6870008004 2 0 1 2 0 0 7 0 .002 

CONTACT 6870008005 8 1 1 0 0 0 7 0 .002 

CAP 6870008006 7 2 1 1 1 3 7 0 .008 

P/P-B.KN 6870020002 6 2 4 3 6 4 7 0 .002 

COVER-FRONT 6870021002 6 1 5 5 6 4 7 0 .008 

COVER-REAR 6870036002 6 1 1 5 5 2 7 0 .008 

COVER-REAR 6870027002 6 1 4 5 5 4 7 0 .008 

SHIELD 687.0043001 7 0 0 5 0 6 8 0 .008 

SHIELD 6870060001 6 0 5 0 0 3 7 0 .008 

SHIELD 6870060001 6 3 0 5 5 1 9 0 .008 

SHIELD 6870093001 6 3 0 5 5 1 9 0 .008 

WASHER 6870110001 0 0 0 1 5 0 8 0 .002 

SHIELD 6870112001 6 1 0 0 5 1 8 0 .008 

SHIELD 6870127001 6 1 0 0 5 3 8 0 .008 

COVER 6870148001 8 9 0 5 1 4 7 0 .008 

COVER 6870148002 6 1 0 5 0 4 7 0 .008 

PARTITIO 6870167002 7 1 0 5 0 1 7 0 .002 

PARTITIO 6870167003 7 1 0 5 5 1 7 0 .002 

PARTITIO 6870167004 7 1 0 0 0 1 7 0 .005 

PARTITIO 6870167005 7 1 0 0 0 1 7 0 .005 

PLATE 6870173002 0 0 0 2 0 0 7 0 .008 

PLATE 6870174001 0 0 0 2 0 3 7 0 .008 
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Part name Part number Codes Accuracy 

P/P-B.K 6870181001 0 0 0 2 0 3 7 0 .008 
INSULATO 6870327001 6 0 0 0 5 0 9 0 .02 
INSULATO 6870327001 0 0 0 0 5 1 9 0 .02 
CAP 6870341001 0 0 0 0 5 0 8 0 .005 
BAR 6870364001 7 1 0 0 1 3 7 0 .008 
BUS 6870444001 6 0 0 0 0 0 8 0 .015 
SPACER 6870444001 0 0 0 0 0 0 8 0 .002 
HOUSING 6874008002 6 0 0 0 1 4 7 0 .008 
HEATSINK 6874098001 6 3 0 5 0 0 8 0 .001 
CONNECTO 6874138001 4 2 4 0 0 0 8 0 .003 
SUB-SHIELD 6874139002 6 2 0 5 5 3 8 0 .008 
FRAME 6874140002 6 2 0 5 6 4 7 0 .008 
P/P-PER 6874216002 6 2 0 0 1 1 7 0 .008 
SPRING 7574570001 7 0 4 0 0 0 8 0 .005 
ANT-SECT 7575872001 2 0 0 0 0 2 7 0 .008 
TUBE 7575872002 2 0 0 2 0 2 7 0 .008 

SLEEVE 7575872003 0 1 0 2 0 2 7 0 .008 
END 7575872004 0 0 0 0 0 2 7 0 .008 
BASE 7575875001 3 1 4 2 0 2 7 0 .008 
CROSS 5755955002 8 3 1 0 1 0 0 0 .008 
SKIRT 7576591001 0 0 1 0 1 1 7 0 .005 
COVER 7575896001 6 0 0 0 1 3 7 0 .005 
LOAD 7578424001 8 8 0 4 1 4 0 0 .008 

OVERLAY 7578431001 6 0 0 3 1 6 8 0 .008 
SPRING 7578612001 6 1 0 0 6 1 8 0 .008 
ARM-LOCK 7578614001 6 4 1 0 0 1 9 0 .008 
FRAME 7578677001 6 0 0 5 5 3 7 0 .008 
CHASSIS 7578887001 6 0 0 0 6 2 8 0 .008 

CHASSIS 7578887002 7 0 0 5 0 2 8 0 .008 
BAR-NO.1 7578887003 8 0 0 0 0 0 8 0 .008 
BAR-No.2 7578887994 8 0 0 0 0 0 8 0 .008 

SHIELDl 7578887005 7 1 0 0 0 1 8 0 .008 

SHIELD2 7578887006 7 1 0 0 0 1 8 0 .008 
SHIELDS 7578887007 7 1 0 0 0 1 8 0 .008 

BAR-NO.3 7578887009 8 0 0 0 0 0 8 0 .008 

PLATE 7578887010 6 0 0 0 0 0 8 0 .008 

CHASSIS 7578889001 6 0 0 0 6 2 8 0 .008 
CHASSIS 7578889002 6 0 0 0 6 2 8 0 .008 
BLOCKl 7578889004 8 0 0 0 0 0 8 0 .008 

DIVIDER 7578889006 7 0 0 0 0 1 8 0 .008 
HOLDER 7610504001 4 2 2 3 2 0 8 0 .008 
HOLDER 7610504002 4 2 2 3 2 0 8 0 .008 
WASHER 7610014003 2 0 1 0 2 0 8 0 .008 

PLATE 7610167002 6 4 0 5 6 1 7 0 .008 
COVER 7610463001 7 2 0 7 6 7 9 0 .008 
GROMMET 7610493001 2 0 1 0 6 0 9 0 .008 
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Part name Part number Codes Accuracy 

BASE 7610464001 6 4 0 7 6 6 7 0 .005 
INSULATO 6870003001 2 3 1 0 6 0 9 0 .002 
TUBE 7575863002 1 0 0 0 0 2 7 0 .004 
END 7575863004 0 0 1 2 0 2 7 0 .003 
SPACER 7575863005 2 0 1 0 0 0 7 0 .008 
CONDUIT 7575863006 2 0 0 0 0 0 7 0 .008 
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APPENDIX C: GEOMETRICAL AND DIMENSIONAL CHARACTERISTICS OF PART FAMILY 
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TABLE 31. Geometrical and dimensional characteristics of part family 1 
of PFA/CASC (16 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

0W019819012 45331 5.462 1.372 1.0 
1J1277000B2 11230 2.4375 2.25 5.0 
1R124835072 32434 1.4375 1.184 5.0 
1R125624092 00014 0.5 3.25 3.0 
2E542919042 32541 3.9688 4.125 5.0 
2F143224092 15111 7.4375 3.125 10.0 
2J496219012 11221 3.375 2.215 5.0 
2L342619012 11200 3.3125 4.885 5.0 
2L339519012 10200 2.8125 3.26 5.0 
2L373522012 11200 3.3125 4.885 5.0 
2L416322012 11210 3.375 2.8125 4.0 
2R124724092 32434 4.375 2.75 6.0 
3C780819042 11110 7.5 4.625 7.0 
3N698122012 11220 7.0 7.125 7.0 
3N698322012 11220 7.5 4.625 7.0 
4E397919012 11221 5.5 10.1875 7.0 

TABLE 32. Geometrical and dimensional characteristics of part family 2 
of PFA/CASC (10 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

6870008005 81100 0.78 0.5 0.428 2.0 
6870008006 72111 5.0 0.75 0.124 3.0 
6870092001 63055 2.0 0.675 0.031 0.0179 
6870093001 63055 2.0 0.675 0.03 1.0 
6870239001 60005 6.0 0.38 0.125 0.0057 
7578887003 80000 0.422 0.375 0.25 1.0 
7578887004 80000 0.4 0.4 0.2 0.0166 
7576887009 80000 0.437 0.422 0.2 1.0 
7578887010 60000 0.375 0.375 0.064 1.0 
7578889004 80000 0.421 0.203 0.203 1.0 



www.manaraa.com

248 

TABLE 33. Geometrical and dimensional characteristics of part family 3 
of PFA/CASC (10 members) 

Part 
number 

Geometrical 
Code L 

Dimensions 
D A B  C Weight 

6870112001 61005 2 0.675 0.005 2.0 
6874139001 62055 4.65 3.29 0.006 1.0426 
7574570001 70400 0.796 0.155 0.005 1.0 
7576591001 00101 0. 032 1.0 1.0 
7576896001 60001 4.406 3.128 0.032 0.054 
7578887005 71000 1.484 0.4219 0.03 1.0 
7578887006 71000 1.484 0.4219 0.03 1.0 
7578887007 71000 1.89 0.4219 0.03 1.5 
7610014003 20102 0. 312 0.031 1.0 
7610167002 64056 0.891 0.415 0.04 1.0 
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TABLE 34. Geometrical and dimensional characteristics of part family 4 
of PFA/CASC (46 members) 

Part Geometrical Dimensions 
number Code L D A B c Weight 

7J1025 42453 4.125 0.812 3.5 
5J0766 89202 3.06 2 .062 1.935 3.0 
6J0433 69220 5.63 2 .38 1.344 9.0 
6J0434 69722 8.01 4 .76 1.94 12.0 
4J1091 41452 2.46 1.125 3.0 
2J8069 60122 2.884 1 .62 0.562 1.0 
5J8773 60221 2.51 2 .36 0.56 1.0 
8J0130 60252 5.13 4 .0 0.94 5.0 
8J0444 32421 2.85 2.372 3.0 
4T1014 32431 1.062 1.56 2.0 
9J1234 89621 3.25 2 .742 2.375 3.5 
5J1553 42411 3.73 1.375 5.0 
4J2696 32331 1.81 1.12 3.0 
3G2842 31431 2.99 2.28 5.0 
4J3291 41331 2.812 1.0 7.0 
9J3441 31421 2.5 1.62 3.0 
7J3897 33431 3.382 1.94 5.0 
1U4010 35421 2.28 1.38 5.0 
9J4077 35421 2,21 1.406 2.5 
9J4079 31421 2.0 1.375 7.0 
4J4571 43421 4.188 1.0 9.0 
9J4847 31421 1.87 1.0 2.0 
9J4941 61251 3.8 3 .5 0.932 3.0 
9M5550 31401 1.75 1.0 3.0 
8J5875 42422 5.562 1.375 7.5 
7J5928 43454 2.5 1.12 1.5 
4J6485 45321 4.69 1.375 4.0 
3J7807 35442 4.12 2.22 4.0 
7J8308 35422 1.75 1.0 3.0 
8J8660 20022 4.687 1.25 4.0 
8J8661 42401 3.25 1.3 2.0 
5J8774 31451 1.312 1.375 2.0 
5J8793 83131 2.562 2 .24 1.0 3.0 
4T9151 41452 3.622 1.064 11.51 
4T9165 31451 1.693 2.48 5.0 
8J9257 43451 2.5 0.875 3.0 
6J9992 38431 3.58 2.0 3.0 
5J9110 33420 2.156 1.625 5.0 
3S7445 26010 6.25 0.48 3.25 
8J0084 83233 4.56 2 o

 
w
 

1.688 4.0 
3G0650 45434 4.31 1.38 16.5 
4T0958 45432 5.512 1.969 15.0 
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TABLE 34. (Continued) 

Part 
number 

Geometrical 
Code L D 

Dimensions 
A B C Weight 

8J1701 89251 5.358 4 .813 2 .86 11 
8J1917 81632 8.062 4 .75 2 .5 20 
3T2321 45411 5 .91 1 .875 6.0 
9J3453 41321 5 .062 2 .16 5.0 

TABLE 35. Geometrical and dimensional characteristics of part family 5 
of PFA/CASC (20 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

3J0601 42301 2.63 1.125 2.0 
5J1340 47351 2.25 1 5.5 
1U0488 83231 5.49 4 2.12 4.79 
3G2840 83430 3.25 2.63 1.1 3.0 
3G2841 83430 3.25 2.63 1.57 4.0 
4T4632 41421 4.37 1.57 3.0 
6P5391 31002 2.75 1.562 2.0 
7J8056 65251 5.13 4.0 0.94 5.0 
8J8573 33422 1.38 1.25 2.0 
8J2308 83151 4.375 3.75 2.12 6.0 
9J0752 41402 6.63 0.7505 13.5 

5J0899 83531 4.5 2.125 1.38 5.0 
9T1495 65231 6.85 4.646 1.339 11.0 
1U2083 81651 3.74 2.244 1.378 7.0 
7J2266 83651 3.5 2.88 1.38 5.5 
9J2382 20001 23.72 3.69 8.5 
9T2887 60631 7.87 3.436 1.375 4.68 
9J3382 83632 6.495 3.75 2.5 14.0 
8J3554 45431 2.58 0.75 4.0 
8J3665 83453 6.875 3.25 3.09 14.0 
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TABLE 36. Geometrical and dimensional characteristics of part family 1 
of PFA/ROCA (27 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

4J3291 41331 2.812 1.0 7.0 
0W019819012 45331 5.462 1.372 1.0 
10A7182X012 21001 9.1 0.501 1.0 
11A5214X022 14021 2.125 1.406 1.0 
11A5216X012 14021 2.125 1.406 1.0 
1E3943000A2 32427 2.6875 4.25 5.0 
1J1277000B2 11230 2.4375 2.25 5.0 
1K586935162 20000 12.25 0.4375 3.0 
1R124835072 32434 1.4375 1.184 5.0 
1R250935162 20004 7.6875 0.3125 3.0 
2E542919042 32541 3.9688 4.125 5.0 
2F1428000A2 25001 14.9 1.119 5.0 
2J496219012 11221 3.375 2.215 5.0 
2L342619012 11200 3.3125 4.885 5.0 
2L339519012 10200 2.8125 3.26 5.0 
2L373522012 11200 3.3125 4.885 5.0 
2L416322012 11210 3.375 2.8125 4.0 
3C780819042 11110 7.5 4.625 7.0 
3N698122012 11220 7.0 7.125 7.0 
3N698322012 11220 7,5 4.625 7.0 
3P786933092 38400 4.875 8.375 7.0 
3V708322012 35431 4.125 1.7969 4.5 
4E397919012 11221 5.5 10.1875 7.0 
6874216002 62001 1.97 0.7 0.04 2.0 
7575872002 20020 11.78 2.5 3.0 
7575875001 31420 5.156 3.5 4.0 
7610504001 42232 1.683 0.146 2.0 
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TABLE 37, Geometrical and dimensional characteristics of part family 2 
of PFA/ROCA (45 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

7J1025 42453 4.125 0.812 3.5 
5J0766 89202 3.06 2 .062 1 .935 3.0 
6J0433 69220 5.63 2 .38 1 .344 9.0 
6J0434 69722 8.01 4 .76 1 .94 12.0 
4J1091 41452 2.46 1.125 3.0 
3J2973 83150 3.01 2 .18 0 .875 1.0 
2J8069 60122 2.884 1 .62 0 .562 1.0 
5J8773 60221 2.51 2 .36 0 .56 1.0 
8J0130 60252 5.13 4 .0 0 .94 5,0 
8J0444 32421 2.85 2.372 3.0 
5J1553 42411 3.73 1.375 5,0 
3J1970 82531 2.124 1 .5 0 .75 1,0 
8J2045 83551 3.88 2 .63 1 .0 4.0 
5J2438 42421 3.59 1 3.0 
4J2696 32331 1.81 1.12 3.0 
1U2764 71602 2.28 0 .74 0 .55 0.5 
3G2842 31431 2.99 2.28 5.0 
7J3897 33431 3.382 1.94 5.0 
4J4571 43421 4.188 1.0 9.0 
2J5143 83231 3.75 2 .84 2 .12 6.0 
8J5875 42422 5.562 1.375 7.5 
7J5928 43454 2.5 1.12 1.5 
4J6485 45321 4.69 1.375 4.0 
7J7674 43422 3.69 1 3.0 
3J7807 35442 4.12 2.22 4.0 
8J8660 20022 4.687 1.25 4.0 
8J8661 42401 3.25 1.3 2.0 
5J8793 83131 2.562 2 .24 1 .0 3.0 
8J8829 89622 2.36 2 .215 1 .5 1.5 
8J9257 43451 2.5 0.875 3.0 
6J9992 38431 3.58 2 3.0 
5J9110 33420 2.156 1.625 5.0 
8J1701 89251 5.358 4 .813 2 .86 11.0 
8J1917 81632 8.062 4 .75 2 .5 20.0 
3T2321 45411 5.91 1.875 6.0 
9J3453 41321 5.062 2.16 5.0 
11A5324X012 17111 2.125 2.401 1.0 
11A5326X012 17111 2.125 2.813 1.0 
1E501208012 42604 6.8125 2.625 5.0 
28A2514X012 OHIO 1.2031 4.25 3.0 
2F143224092 15111 7.4375 3.125 10.0 
2R124724092 32434 4.375 2.75 6.0 
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TABLE 37. (Continued) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

38A2508X012 06120 1 .8438 6.37 4.0 
38A2511X012 06320 2 .6875 6.37 6.0 
3R124624092 38451 3 .375 2.0 5.0 

TABLE 38. Geometrical and dimensional characteristics of part family 3 
of PFA/ROCA (22 members) 

Part 
number 

Geometrical 
Code L D 

Dimensions 
A B C Weight 

4T1889 80651 4.409 3 .248 2 .776 13.25 
15A6470X012 14220 2 .593 0. 869 1.0 
15A6503X012 21220 2 .625 0. 869 1.0 
1U222646172 04104 0 .5625 3. 2813 2.0 
28A2519X012 23210 5 .625 1. 25 4.0 
2R2617X0012 32430 3 .6563 3. 0 4.0 
6870005001 20000 3 .5 0. 5773 0.2238 
6870008004 20120 6 .32 0. 685 0.1255 
6870008005 81100 0.78 0 .5 0 .428 2.0 
6870008006 72111 5 0 .75 0 .124 3.0 
6870092001 63055 2.0 0 .675 0 .031 .0179 
6870093001 63055 2.0 0 .675 0 .03 1.0 
6870174001 00020 0 .125 5. 06 1.0 
6870239001 60005 6 0 .38 0 .125 0.0057 
7578887003 80000 0.422 0 .375 0 .25 1.0 
7578887004 80000 0.4 0 .4 0 .2 0.0166 
7578887009 80000 0.437 0 .422 0 .2 1.0 
7578887010 60000 0.375 0 .375 0 .064 1.0 
7578889004 80000 0.421 0 .203 0 .203 1.0 
7610493001 20106 0 .04 0. 315 0.0001 
6870003001 23106 2 .48 0. 568 0.2222 
7575863006 20000 27.0 0. 375 0.1056 
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TABLE 39. Geometrical and dimensional characteristics of part family 4 
of PFA/ROCA (32 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

6870007001 63101 5.749 2.25 0.09 0.3 
6870020002 62436 8.756 5.739 0.125 4.0 
6870021002 61556 8.866 5.795 0.125 4.0 
6870026002 61155 5.843 4.108 0.38 1.5 
6870027002 61455 6.57 5.57 0.38 3.0 
6870043001 70050 7.705 0.304 0.021 2.0 
6870060001 60500 4.396 4.314 0.025 1.0 
6870110001 00015 0.01 0 .38 1.0 
6870112001 61005 2.0 0.675 0.005 2.0 
6870127001 61005 5.2 3.35 0.005 0.0386 
6870148002 61050 7.488 3.272 0.032 1.0 
6870167003 71055 1.643 0.325 0.032 1.0 
6870181001 00020 0.062 5 .1 1.0 
6870341001 00005 0.0002 0 .39 1.0 
6870364001 71001 6.225 0.25 0.09 1.5 
6870407001 60000 0.25 0.25 0.005 0.0002 
6870444001 00000 0.052 0 .125 0.0006 
6874008002 60001 7.12 3.0 1.75 1.3345 
6874098001 63050 0.19 0.09 0.0159 1.0 
6874139001 62055 4.65 3.29 0.006 1.0426 
7574570001 70400 0.796 0.155 0.005 1.0 
7575872001 20000 14.125 2 .5 3.0 
7575955002 83101 0.7188 0.6875 0.375 2.0 
7576591001 00101 0.032 1 .0 1.0 
7576896001 60001 4.406 3.128 0.032 0.054 
7578614001 64100 0.125 1.5 2.0 0.5 
7578677001 60055 6.204 2.585 0.9063 4.0 
7578887001 60006 3.562 1.562 0.484 4.0 
7578887002 70050 3.562 0.4219 0.484 1.0 
7578889001 60006 3.562 1.562 0.484 4.0 
7578889002 60006 3.562 1.562 0.406 0.2778 
7610167002 64056 0.891 0.415 0.04 1.0 
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TABLE 40. Geometrical and dimensional characteristics of part family 5 
of PFA/ROCA (30 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

3J0601 42301 2.63 1,125 2 
5J1340 47351 2.25 1 5.5 
1U0488 83231 5.49 4 2.12 4,79 
4T1014 32431 1.062 1.56 2 
9J1234 89621 3.25 2.742 2.375 3,5 
3G2840 83430 3.25 2.63 1.1 3,0 
3G2841 83430 3.25 2.63 1.57 4.0 
1U4010 35421 2.28 1.38 5.0 
9J4077 35421 2.21 1.406 2.5 
4T4632 41421 4.37 1.57 3.0 
9J4847 31421 1.87 1.0 2.0 
9J4941 61251 3.8 3.5 0.932 3.0 
6P5391 31002 2.75 1.562 2.0 
9M5550 31401 1.75 1.0 3.0 
7J8056 65251 5.13 4.0 0.94 5.0 
8J8573 33422 1.38 1.25 2.0 
5J8774 31451 1.312 1.375 2.0 
4T9165 31451 1.693 2.48 5.0 
8J2308 83151 4.375 3,75 2.12 6.0 
9J0752 41402 6.63 0.7505 13.5 
5J0899 83531 4.5 2.125 1.38 5.0 
9T1495 65231 6.85 4.646 1.339 11.0 
1U2083 81651 3.74 2,244 1.378 7.0 
7J2266 83651 3.5 2.88 1.38 5.5 
9J2382 20001 23.72 3.69 8.5 
9T2887 60631 7.87 3,436 1.375 4.68 
9J3382 83632 6.495 3,75 2.5 14.0 
8J3554 45431 2.58 0.75 4.0 
8J3665 83453 6.875 3.25 3.09 14,0 
2R331019022 32434 5,0625 5.875 5,0 
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TABLE 41. Geometrical and dimensional characteristics of part family 1 
of Opitz/CASC (60 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

7J1025 42453 4.125 0.812 3.5 
3J0601 42301 2.63 1.125 2.0 
5J1340 47351 2,25 1.0 5.5 
6F4350 32400 1.75 3.0 1.0 
8J0444 32421 2.85 2.372 3.0 
4T1014 32431 1.062 1.56 2.0 
4T1014 32431 1.062 1.56 2.0 
5J1553 42411 3.73 1.375 5.0 
5J2438 42421 3.59 1.0 3.0 
4J2696 32331 1.81 1.12 3.0 
3G2842 31431 2.99 2.28 5.0 
4J3291 41331 2.812 1.0 7.0 
9J3441 31421 2.5 1.62 3.0 
7J3897 33431 3.382 1.94 5.0 
1U4010 35421 2.28 1.38 5.0 
9J4077 35421 2.21 1.406 2.5 
4J4571 43421 4.188 1.0 9.0 
4T4632 41421 4.37 1.57 3.0 
4T4636 33421 1.26 1.1 1.0 
9J4847 31421 1.87 1.0 2.0 
9M5550 31401 1.75 1.0 3.0 
8J5875 42422 5.562 1.375 7.5 
7J5928 43454 2.5 1.12 1.5 
4J6485 45321 4.69 1.375 4.0 

7J7674 43422 3.69 1.0 3.0 
3J7807 35442 4.12 2.22 4.0 
6J7908 35424 1.96 1.406 2.5 
7J8308 35422 1.75 1.0 3.0 
8J8573 33422 1.38 1.25 2.0 
8J8661 42401 3.25 1.3 2.0 
5J8774 31451 1.312 1.375 2.0 
6J9992 38431 3.58 2.0 3.0 
5J9110 33420 2.156 1.625 5.0 
3G0650 45434 4.31 1.38 16.5 
4T0958 45432 5.512 1.969 15.0 

3T2321 45411 5.91 1.875 6.0 

9J3453 41321 5.062 2.16 5.0 
8J3554 45431 2.58 0.75 4.0 
0W019819012 45331 5.462 1.372 1.0 
1C477219012 38406 7.25 5 7.0 
1C899514022 30428 1.5625 .4688 1.5 
1E3943000A2 32427 2.6875 4.25 5.0 
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TABLE 41. (Continued) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

1E501208012 42604 6.8125 2.625 5.0 
1R124835072 32434 1.4375 1.184 5.0 
1R124835072 32434 1.4375 1.184 5.0 
20A3382X022 32420 1.985 3.125 4.0 
2E542919042 32541 3.9688 4.125 5.0 
2R124724092 32434 4.375 2.75 6.0 
2R2617X0012 32430 3.6563 3.0 4.0 
2R331019022 32434 5.0625 5.875 5.0 
2U223433272 32430 3.5 3.5 5.5 
2U223733272 32432 3.5 3.5 5.5 
2U740448932 32430 3.5 3.5 5.5 
2U741048932 32430 3.5 3.5 5.5 
36A2065X012 32430 4.0625 3.5 1.0 
3P786933092 38400 4.875 8.375 7.0 
3R124624092 38451 3.375 2.0 5.0 
3V708322012 35431 4.125 1.7969 4.5 
6874138001 42400 1.03 0.3 2.0 
7575875001 31420 5.156 3.5 4.0 
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TABLE 42. Geometrical and dimensional characteristics of part family 2 
of Opitz/CASC (25 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

1U0488 83231 5.49 4 2.12 4.79 
4J1137 83551 5.94 2.88 2.5 6.0 
9J1234 89621 3.25 2.742 2.375 3.5 
3J1970 82531 2.124 1.5 0.75 1.0 
8J2045 83551 3.88 2.63 1.0 4.0 
3G2840 83430 3.25 2.63 1.1 3.0 
2J5143 83231 3.75 2.84 2.12 6.0 
5J8793 83131 2.562 2.24 1.0 3.0 
8J8829 89622 2.36 2.215 1.5 1.5 
8J2308 83151 4.375 3.75 2.12 6.0 
8J0084 83233 4.56 2.03 1.688 4.0 
8J0510 85664 5.61 3.33 2.4 10.0 
5J0899 83531 4.5 2.125 1.38 5.0 
8J1701 89251 5.358 4.813 2.86 11.0 
4T1889 80651 4.409 3.248 2.776 13.25 
8J1917 81632 8.062 4.75 2.5 20.0 
1U2083 81651 3.74 2.244 1.378 7.0 
1U2177 83251 3.54 3.07 1.97 5.0 
7J2266 83651 3.5 2.88 1.38 5.5 
8J2305 81631 4.51 4.19 2.041 9.0 
9J3382 83632 6.495 3.75 2.5 14.0 
8J3665 83453 6.875 3.25 3.09 14.0 
1E944223072 83550 2.5625 15.0 .7188 3.0 
6870007001 63101 5.749 2.25 0.09 0.3 
7575955002 83101 0.7188 0.6875 0.375 2.0 
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TABLE 43. Geometrical and dimensional characteristics of part family 3 
of Opitz/CASC (37 members) 

Part 
number 

Geometrical 
Code L D 

Dimensions 
A B C Weight 

8J5618 60721 4.0 2.755 0.875 3.0 
9T2887 60631 7.87 3.436 1.375 4.68 
6870008002 61000 7.294 4.5 0.314 4.0 
6870043001 70050 7.705 0.304 0.021 2.0 
6870060001 60500 4.396 4.314 0,025 1.0 
6870092001 63055 2.0 0.675 0.031 0.0179 
6870093001 63055 2.0 0.675 0.03 1.0 
6870112001 61005 2.0 0.675 0.005 2.0 
6870127001 61005 5.2 3.35 0.005 0.0386 
6870148002 61050 7.488 3.272 0.032 1.0 
6870167002 71050 1.643 0.325 0.032 0.0095 
6870167004 71000 1.148 0.335 0.032 0.0093 
6870167005 71000 1.068 0.325 0.032 1.0 
6870239001 60005 6.0 0.38 0.125 0.0057 
6870364001 71001 6.225 0.25 0.09 1.5 
6870407001 60000 0.25 0.25 0.005 0.0002 
6874008002 60001 7.12 3.0 1.75 1.3345 
6874139001 62055 4.65 3.29 0.006 1.0426 
6874216002 62001 1.97 0.7 0.04 2.0 
7574570001 70400 0.796 0.155 0.005 1.0 
7576896001 60001 4.406 3.128 0.032 0.054 
7578431001 60031 19.245 6.463 0.156 8.0 
7578612001 61006 0.8438 0.5 0.05 1.0 
7578677001 60055 6.204 2.585 0.9063 1 4.0 
7578887001 60006 3.562 1.562 0.484 4.0 
7578887002 70050 3.562 0.4219 0.484 1.0 
7578887003 80000 0.422 0.375 0.25 1.0 
7578887004 80000 0.4 0.4 0.2 0.0166 
7578887005 71000 1.484 0.4219 0.03 1.0 
7578887006 71000 1.484 0.4219 0.03 1.0 
7578887007 71000 1.89 0.4219 0.03 1.5 
7578887009 80000 0.437 0.422 0.2 1.0 
7578887010 60000 0.375 0.375 0.064 1.0 
7578889001 60006 3.562 1.562 0.484 4.0 
7578889002 60006 3.562 1.562 0.406 0.2778 
7578889004 80000 0.421 0.203 0.203 1.0 
7578889006 70000 1.981 0.421 0.03 1.0 
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TABLE 44. Geometrical and dimensional characteristics of part family 4 
of Opitz/CASC <57 members) 

Part Geometrical Dimensions 
number Code L D A B  C Weight 

8J8660 20022 4.687 1.25 4.0 
10A7182X012 21001 9.1 0.501 1.0 
15A1288X012 11001 0.718 0.2813 0.5 
15A6470X012 14220 2.593 0.869 1.0 
15A6480X012 15220 2.532 0.869 1.0 
15A6490X012 11220 2.0 1.125 1.0 
15A6503X012 21220 2.625 0.869 1.0 
1A510735072 02130 0.875 1.75 1.5 
1B169135012 10000 1.75 1.125 2.0 
1B883119012 11020 6.1875 4.875 5.0 
1D228235072 02138 1.0625 2.5983 2.0 
1H830814012 11230 0.625 1.062 3.0 
1J1277000B2 11230 2.4375 2.25 5.0 
1K586935162 20000 12.25 0.4375 3.0 
1L432314012 11100 0.4688 0.6863 0.75 
1R250935162 20004 7.6875 0.3125 3.0 
25A1289X012 16100 1.0 1.149 1.5 
25A6687X012 11100 3.5 3.4844 5.5 
28A2514X012 OHIO 1.2031 4.25 3.0 
2E4085000A2 11110 3.5 6.0625 4.0 
2F1428000A2 25001 14.9 1.119 5.0 
2J496219012 11221 3.375 2.215 5.0 
2L342619012 11200 3.3125 4.885 5.0 
2L373522012 11200 3.3125 4.885 5.0 
2L416322012 11210 3.375 2.8125 4.0 
2N5532000A2 25000 9.94 0.62 5.0 
2R2454000A2 25004 7.41 1.62 4.0 
38A2508X012 06120 1.8438 6.37 4.0 
38A2511X012 06320 2.6875 6.37 6.0 
3C780819042 11110 7.5 4.625 7.0 
3N698122012 11220 7.0 7.125 7.0 
3N698322012 11220 7.5 4.625 7.0 
4E397919012 11221 5.5 10.1875 7.0 
T1095224102 10101 0.84 0.876 1.0 
6870004001 24000 4.8 0.371 2.0 

6870005001 20000 3.5 0.5773 0.2238 
6870006001 24000 8.55 0.506 2.0 
6870007003 10100 2.21 0.75 2.0 
6870008004 20120 6.32 0.685 0.1255 
6870173002 00020 0.08 2.3 1.0 
6870174001 00020 0.125 5.06 1.0 
6870181001 00020 0.062 5.1 1.0 
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TABLE 44. (Continued) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

6870327001 00005 0.8 0 .35 0.05 1.0 
6870341001 00005 0.0002 0.39 1.0 
6870444001 00000 0.052 0.125 0.0006 
7575872001 20000 14.125 2.5 3.0 
7575872002 20020 11.78 2.5 3.0 
7575872003 01020 2.5 1.125 0.7174 
7575872004 00000 2.5 0.125 0.7174 
7576591001 00101 0.032 1.0 1.0 
7610014003 20102 0.312 0.031 1.0 
7610493001 20106 0.04 0.315 0.0001 
6870003001 23106 2.48 0.568 0.2222 
7575863002 10000 3.7188 2.5 2.0 
7575863004 00120 0.125 2.412 0.18 
7575863005 20100 0.04 0.315 0.0001 
7575863006 20000 27.0 0.375 0.1056 
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TABLE 45. Geometrical and dimensional characteristics of part family 1 
of Opitz/ROCA (21 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

1A510735072 02130 0.875 1.75 1.5 
1C794935032 04106 0.4688 0.25 0.5 
1D228235072 02138 1.0625 2.5983 2.0 
1R125624092 00014 0.5 3.25 3.0 
1R126335072 01104 0.4375 1.154 1.5 
1U222646172 04104 0.5625 3.2813 2.0 
28A2514X012 OHIO 1.2031 4.25 3.0 
38A2508X012 06120 1.8438 6.37 4.0 
38A2511X012 06320 2.6875 6.37 6.0 
T1173614012 01201 0.37 0.945 1.0 
6870110001 00015 0.01 0.38 1.0 
6870173002 00020 0.08 2.3 1.0 
6870174001 00020 0.125 5.06 1.0 
6870181001 00020 0.062 5.1 1.0 
6870327001 00005 0.8 0.35 0.05 1.0 
6870341001 00005 0.0002 0.39 1.0 
6870444001 00000 0.052 0.125 0.0006 
7575872003 01020 2.5 1.125 0.7174 
7575872004 00000 2.5 0.125 0.7174 
7576591001 00101 0.032 1.0 1.0 
7575863004 00120 0.125 2.412 0.18 
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TABLE 46. Geometrical and dimensional characteristics of part family 2 
of Opitz/ROCA (16 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

8J8660 20022 4.687 1.25 4.0 
1B169135012 10000 1.75 1.125 2.0 
1K586935162 20000 12.25 0.4375 3.0 
1R250935162 20004 7.6875 0.3125 3.0 
2L339519012 10200 2.8125 3.26 5.0 
T1095224102 10101 0.84 0.876 1.0 
6870005001 20000 3.5 0.5773 0.2238 
6870007003 10100 2.21 0.75 2.0 
6870008004 20120 6.32 0.685 0.1255 
7575872001 20000 14.125 2.5 3.0 
7575872002 20020 11.78 2.5 3.0 
7610014003 20102 0.312 0.031 1.0 
7610493001 20106 0.04 0.315 0.0001 
7575863002 10000 3.7188 2.5 2.0 
7575863005 20100 0.04 0.315 0.0001 
7575863006 20000 27 0.375 0.1056 

TABLE 47. Geometrical and dimensional characteristics of part family 3 
of Opitz/ROCA (11 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

3S7445 26010 6.25 0.48 3.25 
10A7182X012 21001 9.1 0.501 1.0 
11A5214X022 14021 2.125 1.406 1.0 
11A5216X012 14021 2.125 1.406 1.0 
15A1288X012 11001 0.718 0.2813 0.5 
1B883119012 11020 6.1875 4.875 5.0 
2F1428000A2 25001 14.9 1.119 5.0 
2N5532000A2 25000 9.94 0.62 5.0 
2R2454000A2 25004 7.41 1.62 4.0 
6870004001 24000 4.8 0.371 2.0 
6870006001 24000 8.55 0.506 2.0 
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TABLE 48. Geometrical and dimensional characteristics of part family 4 
of Opitz/ROCA (11 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

15A6470X012 14220 2.593 0.869 1.0 
15A6480X012 15220 2.532 0.869 1.0 
15A6490X012 11220 2.0 1.125 1.0 
15A6503X012 21220 2.625 0.869 1.0 
1H830814012 11230 0.625 1.062 3.0 
1J1277000B2 11230 2.4375 2.25 5.0 
28A2519X012 23210 5.625 1.25 4.0 
2L416322012 11210 3.375 2.8125 4.0 
3C780819042 11110 7.5 4.625 7.0 
3N698122012 11220 7.0 7.125 7.0 
3N698322012 11220 7.5 4.625 7.0 
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TABLE 49. Geometrical and dimensional characteristics of part family 5 
of Opitz/ROCA (38 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

6F4350 32400 1.75 3.0 1.0 
8J0444 32421 2.85 2.372 3.0 
4T1014 32431 1,062 1.56 2.0 
4J2696 32331 1.81 1.12 3.0 
3G2S42 31431 2.99 2.28 5.0 
9J3441 31421 2.5 1.62 3.0 
7J3897 33431 3.382 1.94 5.0 
1U4010 35421 2.28 1.38 5.0 
9J4077 35421 2.21 1.406 2.5 
4T4636 33421 1.26 1.1 1,0 
9J4847 31421 1.87 1.0 2.0 
6P5391 31002 2.75 1.562 2.0 
9M5550 31401 1.75 1.0 3,0 
3J7807 35442 4.12 2,22 4.0 
6J7908 35424 1.96 1,406 2.5 
7J8308 35422 1.75 1.0 3.0 
8J8573 33422 1.38 1.25 2.0 
5J8774 31451 1.312 1.375 2.0 
6J9992 38431 3.58 2,0 3.0 
5J9110 33420 2.156 1.625 5.0 
1C477219012 38406 7.25 5.0 7.0 
1C899514022 30428 1.5625 0.4688 1.5 
1E3943000A2 32427 2.6875 4,25 5.0 
1R124835072 32434 1.4375 1.184 5.0 
20A3382X022 32420 1.985 3.125 4.0 
2E542919042 32541 3.9688 4.125 5.0 
2R124724092 32434 4.375 2.75 6.0 
2R2617X0012 32430 3.6563 3.0 4.0 
2R331019022 32434 5.0625 5.875 5.0 
2U223433272 32430 3.5 3.5 5.5 
2U223733272 32432 3.5 3.5 5.5 
2U740448932 32430 3.5 3.5 5.5 
2U741048932 32430 3.5 3.5 5.5 
36A2065X012 32430 4.0625 3.5 1.0 
3P786933092 38400 4.875 8.375 7.0 
3R124624092 38451 3.375 2.0 5.0 
3V708322012 35431 4.125 1.7969 4,5 
7575875001 31420 5.156 3.5 4,0 
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TABLE 50. Geometrical and dimensional characteristics of part family 6 
of Opitz/ROCA (16 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

7J1025 42453 4.125 0.812 3.5 
5J1553 42411 3.73 1.375 5.0 
5J2438 42421 3.59 1.0 3.0 
3J2975 43402 4.78 1.44 9.0 
4J4571 43421 4.188 1.0 9.0 
8J5875 42422 5.562 1.375 7.5 
7J5928 43454 2.5 1.12 1.5 
7J7674 43422 3.69 1.0 3.0 
8J8661 42401 3.25 1.3 2.0 
8J9257 43451 2.5 0.875 3.0 
3G0650 45434 4.31 1.38 16.5 
4T0958 45432 5.512 1.969 15.0 
3T2321 45411 5.91 1.875 6.0 
8J3554 45431 2.58 0.75 4.0 
3B186522012 48407 8.25 3.011 12.0 
6874138001 42400 1.03 0.3 2.0 
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TABLE 51. Geometrical and dimensional characteristics of part family 7 
of Opitz/ROCA (41 members) 

Part Geometrical Dimensions 
number Code L D A B C Weight 

6J0433 69220 5.63 2.38 1.344 9.0 
6J0434 69722 8.01 4.76 1.94 12.0 
2J8069 60122 2.884 1.62 0.562 1.0 
5J8773 60221 2.51 2.36 0.56 1.0 
8J0130 60252 5.13 4.0 0.94 5.0 
9J4941 61251 3.8 3.5 0.932 3.0 
8J5618 60721 4 2.755 0.875 3.0 
7J8056 65251 5.13 4.0 0.94 5.0 
8J2302 69632 5.19 4.38 1.281 11.0 
9T1495 65231 6.85 4.646 1.339 11.0 
9T2887 60631 7.87 3.436 1.375 4.68 
6870007001 63101 5.749 2.25 0.09 0.3 
6870008002 61000 7.294 4.5 0.314 4.0 
6870020002 62436 8.756 5.739 0.125 4.0 
6870021002 61556 8.866 5.795 0.125 4.0 
6870026002 61155 5.843 4.108 0.38 1.5 
6870027002 61455 6.57 5.57 0.38 3.0 
6870060001 60500 4.396 4.314 0.025 1.0 
6870092001 63055 2 0.675 0.031 0.0179 
6870093001 63055 2 0.675 0.03 1.0 
6870112001 61005 2 0.675 0.005 2.0 
6870127001 61005 5.2 3.35 0.005 0.0386 
6870148002 61050 7.488 3.272 0.032 1.0 
6870239001 60005 6 0.38 0.125 0.0057 
6870407001 60000 0.25 0.25 0.005 0.0002 
6874008002 60001 7.12 3 1.75 1.3345 
6874098001 63050 0.19 0.09 0.0159 1.0 
6874139001 62055 4.65 3.29 0.006 1.0426 
6874140002 62056 9.781 6.06 0.595 2.0 
6874216002 62001 1.97 0.7 0.04 2.0 
7576896001 60001 4.406 3.128 0.032 0.054 
7578431001 60031 19.245 6.463 0.156 8.0 
7578612001 61006 0.8438 0.5 0.05 1.0 
7578614001 64100 0.125 1.5 2 0.5 
7578677001 60055 6.204 2.585 0.9063 4.0 
7578887001 60006 3.562 1.562 0.484 4.0 
7578887010 60000 0.375 0.375 0.064 1.0 
7578889001 60006 3.562 1.562 0.484 4.0 
7578889002 60006 3.562 1.562 0.406 0.2778 
7610167002 64056 0.891 0.415 0.04 1.0 
7610464001 64076 24.0 10.875 0.064 1.9728 
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TABLE 52. Geometrical and dimensional characteristics of part family 8 
of Opitz/ROCA (11 members) 

Part 
number 

Geometrical 
Code L 

Dimensions 
D A B  C Weight 

6870148001 89051 7.56 7.488 3.272 2.0 
6870167002 71050 1.643 0.325 0.032 0.0095 
6870167003 71055 1.643 0.325 0.032 1.0 
6870167004 71000 1.148 0.335 0.032 0.0093 
6870167005 71000 1.068 0.325 0.032 1.0 
6870364001 71001 6.225 0.25 0.09 1.5 
7578424001 88041 8.75 6.375 3.75 5.0 
7578887005 71000 1.484 0.4219 0.03 1.0 
7578887006 71000 1.484 0.4219 0.03 1.0 
7578887007 71000 1.89 0.4219 0.03 1.5 
7610463001 72076 25.593 5.25 0.815 7.0 

TABLE 53. Geometrical and dimensional characteristics of part family 9 
of Opitz/ROCA (15 members) 

Part 
number 

Geometrical 
Code L 

Dimensions 
D A B  C Weight 

1U0488 83231 5.49 4.0 2.12 4.79 
4J1137 83551 5.94 2.88 2.5 6.0 
9J1234 89621 3.25 2.742 2.375 3.5 
3J1970 82531 2.124 1.5 0.75 1.0 
8J2045 83551 3,88 2.63 1.0 4.0 
2J5143 83231 3.75 2.84 2.12 6.0 
5J8793 83131 2.562 2.24 1.0 3.0 
8J2308 83151 4.375 3.75 2.12 6.0 
5J0899 83531 4.5 2.125 1.38 5.0 
8J1701 89251 5.358 4.813 2.86 11.0 
1U2083 81651 3.74 2.244 1.378 7.0 
1U2177 83251 3.54 3.07 1.97 5.0 
7J2266 83651 3.5 2.88 1.38 5.5 
8J2305 81631 4.51 4.19 2.041 9.0 
6870008006 72111 5.0 0.75 0.124 3.0 
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APPENDIX D: RESULTS FOR THE PART FAMILIES WHICH HAD FIVE OR MORE PART 

MEMBERS 

The families which had five or more part members were selected for 

each method. Grippers were configured for those families. The 

configured grippers were evaluated. The results are presented in Table 

54. 

TABLE 54. Result of gripper evaluation for the part families which had 
five or more parts 

Method Total number of Number of parts 
grouped parts grasped successfully 

PFA/CASC 123 76(0.582) 
[20] (+ 3.5%) 

PFA/ROCA 216 125(0.541) 
[59] (+ 3.8%) 

Opitz/CASC 197 148(0.743) 
[18] (+ 0.8%) 

Opitz/ROCA 233 184(0.750) 
[49] (+ 4.0%) 

The percentage of number of parts grasped successfully were 

increased. The amount of the increase is indicated within parenthesis 

under the fraction of parts successfully grasped in Table 54. The 

increase shown is for the comparison of the same analysis for families 

with ten or more parts. The Opitz/ROCA method showed highest 
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percentage. The PFA/CASC method showed the lowest percentage. The 

same result was obtained when the analysis was performed for the 

families which had ten or more part members. 
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